Standard

Homogenization for a periodic elliptic operator in a strip with various boundary conditions. / Senik, N. N.

In: St. Petersburg Mathematical Journal, Vol. 25, No. 4, 2014, p. 647–697.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Senik, N. N. / Homogenization for a periodic elliptic operator in a strip with various boundary conditions. In: St. Petersburg Mathematical Journal. 2014 ; Vol. 25, No. 4. pp. 647–697.

BibTeX

@article{1573edef27de4f1bb23ac5d5d7caf806,
title = "Homogenization for a periodic elliptic operator in a strip with various boundary conditions",
abstract = "A homogenization problem is considered for the periodic elliptic differential operators on $ L_2(\Pi )$, $ \Pi =\mathbb{R} \times (0, a)$, defined by the differential expression $\displaystyle \mathcal {B}_{\lambda }^{\varepsilon } = \sum _{j=1}^2 \mathrm {D... ...repsilon , x_2)\mathrm {D}_j + \mathrm {D}_j h_j(x_1/\varepsilon , x_2) \bigr )$ $\displaystyle + \ Q(x_1/\varepsilon , x_2) + \lambda Q_*(x_1/\varepsilon x_2)$ with periodic, Neumann, or Dirichlet boundary conditions. The coefficients of the expression are assumed to be periodic of period $ 1$ in the first variable and smooth in some sense in the second. Sharp-order approximations are obtained for the inverse of $ \mathcal {B}_{\lambda }^{\varepsilon }$ with respect to $ \mathbf {B}\bigl ( L_2(\Pi )\bigr )$- and $ \mathbf {B}\bigl ( L_2(\Pi ), H^1(\Pi ) \bigr )$-norms in the small $ \varepsilon $ limit with error terms of order $ \varepsilon $.",
keywords = "homogenization, operator error estimates, periodic differential operators, effective operator, corrector",
author = "Senik, {N. N.}",
year = "2014",
doi = "10.1090/S1061-0022-2014-01311-8",
language = "English",
volume = "25",
pages = "647–697",
journal = "St. Petersburg Mathematical Journal",
issn = "1061-0022",
publisher = "American Mathematical Society",
number = "4",

}

RIS

TY - JOUR

T1 - Homogenization for a periodic elliptic operator in a strip with various boundary conditions

AU - Senik, N. N.

PY - 2014

Y1 - 2014

N2 - A homogenization problem is considered for the periodic elliptic differential operators on $ L_2(\Pi )$, $ \Pi =\mathbb{R} \times (0, a)$, defined by the differential expression $\displaystyle \mathcal {B}_{\lambda }^{\varepsilon } = \sum _{j=1}^2 \mathrm {D... ...repsilon , x_2)\mathrm {D}_j + \mathrm {D}_j h_j(x_1/\varepsilon , x_2) \bigr )$ $\displaystyle + \ Q(x_1/\varepsilon , x_2) + \lambda Q_*(x_1/\varepsilon x_2)$ with periodic, Neumann, or Dirichlet boundary conditions. The coefficients of the expression are assumed to be periodic of period $ 1$ in the first variable and smooth in some sense in the second. Sharp-order approximations are obtained for the inverse of $ \mathcal {B}_{\lambda }^{\varepsilon }$ with respect to $ \mathbf {B}\bigl ( L_2(\Pi )\bigr )$- and $ \mathbf {B}\bigl ( L_2(\Pi ), H^1(\Pi ) \bigr )$-norms in the small $ \varepsilon $ limit with error terms of order $ \varepsilon $.

AB - A homogenization problem is considered for the periodic elliptic differential operators on $ L_2(\Pi )$, $ \Pi =\mathbb{R} \times (0, a)$, defined by the differential expression $\displaystyle \mathcal {B}_{\lambda }^{\varepsilon } = \sum _{j=1}^2 \mathrm {D... ...repsilon , x_2)\mathrm {D}_j + \mathrm {D}_j h_j(x_1/\varepsilon , x_2) \bigr )$ $\displaystyle + \ Q(x_1/\varepsilon , x_2) + \lambda Q_*(x_1/\varepsilon x_2)$ with periodic, Neumann, or Dirichlet boundary conditions. The coefficients of the expression are assumed to be periodic of period $ 1$ in the first variable and smooth in some sense in the second. Sharp-order approximations are obtained for the inverse of $ \mathcal {B}_{\lambda }^{\varepsilon }$ with respect to $ \mathbf {B}\bigl ( L_2(\Pi )\bigr )$- and $ \mathbf {B}\bigl ( L_2(\Pi ), H^1(\Pi ) \bigr )$-norms in the small $ \varepsilon $ limit with error terms of order $ \varepsilon $.

KW - homogenization

KW - operator error estimates

KW - periodic differential operators

KW - effective operator

KW - corrector

U2 - 10.1090/S1061-0022-2014-01311-8

DO - 10.1090/S1061-0022-2014-01311-8

M3 - Article

VL - 25

SP - 647

EP - 697

JO - St. Petersburg Mathematical Journal

JF - St. Petersburg Mathematical Journal

SN - 1061-0022

IS - 4

ER -

ID: 5714034