Research output: Contribution to journal › Article › peer-review
Homogenization for a periodic elliptic operator in a strip with various boundary conditions. / Senik, N. N.
In: St. Petersburg Mathematical Journal, Vol. 25, No. 4, 2014, p. 647–697.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Homogenization for a periodic elliptic operator in a strip with various boundary conditions
AU - Senik, N. N.
PY - 2014
Y1 - 2014
N2 - A homogenization problem is considered for the periodic elliptic differential operators on $ L_2(\Pi )$, $ \Pi =\mathbb{R} \times (0, a)$, defined by the differential expression $\displaystyle \mathcal {B}_{\lambda }^{\varepsilon } = \sum _{j=1}^2 \mathrm {D... ...repsilon , x_2)\mathrm {D}_j + \mathrm {D}_j h_j(x_1/\varepsilon , x_2) \bigr )$ $\displaystyle + \ Q(x_1/\varepsilon , x_2) + \lambda Q_*(x_1/\varepsilon x_2)$ with periodic, Neumann, or Dirichlet boundary conditions. The coefficients of the expression are assumed to be periodic of period $ 1$ in the first variable and smooth in some sense in the second. Sharp-order approximations are obtained for the inverse of $ \mathcal {B}_{\lambda }^{\varepsilon }$ with respect to $ \mathbf {B}\bigl ( L_2(\Pi )\bigr )$- and $ \mathbf {B}\bigl ( L_2(\Pi ), H^1(\Pi ) \bigr )$-norms in the small $ \varepsilon $ limit with error terms of order $ \varepsilon $.
AB - A homogenization problem is considered for the periodic elliptic differential operators on $ L_2(\Pi )$, $ \Pi =\mathbb{R} \times (0, a)$, defined by the differential expression $\displaystyle \mathcal {B}_{\lambda }^{\varepsilon } = \sum _{j=1}^2 \mathrm {D... ...repsilon , x_2)\mathrm {D}_j + \mathrm {D}_j h_j(x_1/\varepsilon , x_2) \bigr )$ $\displaystyle + \ Q(x_1/\varepsilon , x_2) + \lambda Q_*(x_1/\varepsilon x_2)$ with periodic, Neumann, or Dirichlet boundary conditions. The coefficients of the expression are assumed to be periodic of period $ 1$ in the first variable and smooth in some sense in the second. Sharp-order approximations are obtained for the inverse of $ \mathcal {B}_{\lambda }^{\varepsilon }$ with respect to $ \mathbf {B}\bigl ( L_2(\Pi )\bigr )$- and $ \mathbf {B}\bigl ( L_2(\Pi ), H^1(\Pi ) \bigr )$-norms in the small $ \varepsilon $ limit with error terms of order $ \varepsilon $.
KW - homogenization
KW - operator error estimates
KW - periodic differential operators
KW - effective operator
KW - corrector
U2 - 10.1090/S1061-0022-2014-01311-8
DO - 10.1090/S1061-0022-2014-01311-8
M3 - Article
VL - 25
SP - 647
EP - 697
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 4
ER -
ID: 5714034