The in situ single-crystal X-ray diffraction and Raman spectroscopy were performed for a sapozhnikovite Na8(Al6Si6O24)(HS)2, a rare mineral with sodalite-type crystal structure. The crystal chemical analysis and calculation of thermal expansion coefficients based on the refinement of Na8(Al6Si6O24)(HS)2 crystal structures in the temperature range of 300–1273 K show that this sodalite-type compound undergoes: (1) reversible phase transition P
3n ↔ Pm
n at 1223 K, (2) drastic increase of linear expansion coefficient at 1173 K, (3) non-elastic behavior of sapozhnikovite framework after cooling. The temperature dependencies of the unit-cell parameters were divided into two parts and described by quadratic a = 8.911(12) – 0.000018(33)T + 0.000000138(22)T2 (from 300 to 1173 K) and linear a = 7.765(13) + 0.001130(11)T (from 1173 to 1273 K) polynomial functions. Raman spectroscopy data reveal the partial transformations of the extra-framework HS− anion by follows reactions: 6HS–→ S3•– + 3H2S (gas) and 2HS– – 2e → S22− + 2H+. These transformations may cause the observed discontinuity in the thermal expansion curve for sapozhnikovite at 1173 K with drastic increase of linear expansion coefficient and not fully elastic behavior of framework after removal of temperature exposure. After the heat treatment experiments (300–1273 K) the HS− anion restores in the β-cage of sapozhnikovite crystal structure. In the synthetic analogue of sapozhnikovite the heat treatment leads to the irreversible transformation according to the reactions: 2HS– + 2.5O2 (gas) → SO42− + 0.25S4 + H2O (gas) and 2HS– + 3.5O2 (gas) → SO42− + SO2 (gas) + H2O (gas). The orange luminescence of Na8(Al6Si6O24)(HS)2 is stable up to the 1073 K.
Original languageEnglish
Article number124067
JournalJournal of Solid State Chemistry
Volume323
Early online date19 Apr 2023
DOIs
StatePublished - 1 Jul 2023

    Research areas

  • High temperature single-crystal diffraction, Hydrosulfide anion, Luminescence, Sodalite type compounds, Thermal expansion, Thermal transformations, Thermo-Raman spectroscopy

ID: 104500672