We examine the prospects of the high-redshift long gamma-ray bursts (LGRBs) Hubble diagram as a test of the basic cosmological principles. Analysis of the Hubble diagram allows us to test several fundamental cosmological principles using the directly observed flux–distance–redshift relation. Modern LGRBs data together with the correlation between the spectral peak energy and the isotropic equivalent radiated energy (the so-called Amati relation) can be used for construction of the Hubble diagram at the model-independent level. We emphasize observational selection effects, which inevitably exist and distort the theoretically predicted relations. An example is the weak and strong gravitational lensing bias effect for high-redshift LGRB in the presence of limited observational sensitivity (Malmquist bias). After bias correction, there is a tendency to vacuum-dominated models with ΩΛ→0.9⁠, Ωm → 0.1. Forthcoming gamma-ray observations by the Transient High-Energy Sky and Early Universe Surveyor (THESEUS) space mission together with ground- and space-based multimessenger facilities will allow us to improve essentially the restrictions on alternative basic principles of cosmological models.
Original languageEnglish
Pages (from-to)1530–1544
JournalMonthly Notices of the Royal Astronomical Society
Volume496
Issue number2
StatePublished - 3 Jun 2020

    Research areas

  • cosmological parameters, distance scale, Gamma-Ray Bursts

ID: 61797545