DOI

The importance of an efficient network resource allocation strategy has grown significantly with the rapid advancement of cellular network technology and the widespread use of mobile devices. Efficient resource allocation is crucial for enhancing user services and optimizing network performance. The primary objective is to optimize the power distribution method to maximize the total aggregate rate for all customers within the network. In recent years, graph-based deep learning approaches have shown great promise in addressing the challenge of network resource allocation. Graph neural networks (GNNs) have particularly excelled in handling graph-structured data, benefiting from the inherent topological characteristics of mobile networks. However, many of these methodologies tend to focus predominantly on node characteristics during the learning phase, occasionally overlooking or oversimplifying the importance of edge attributes, which are equally vital as nodes in network modeling. To tackle this limitation, we introduce a novel framework known as the Heterogeneous Edge Feature Enhanced Graph Attention Network (HEGAT). This framework establishes a direct connection between the evolving network topology and the optimal power distribution strategy throughout the learning process. Our proposed HEGAT approach exhibits improved performance and demonstrates significant generalization capabilities, as evidenced by extensive simulation results.
Original languageEnglish
Pages (from-to)259–283
Number of pages25
JournalInformatics and Automation
Volume23
Issue number1
DOIs
StatePublished - 11 Jan 2024

    Research areas

  • MISO, cellular network, edge-feature, graph attention network, power allocation

ID: 118952047