Standard

Geometric interpretation of Poincare-Chetaev-Rumyantsev equations. / Zegzhda, S. A.; Yushkov, M. P.

In: Prikladnaya Matematika i Mekhanika, Vol. 65, No. 5, 2001, p. 746-754.

Research output: Contribution to journalArticlepeer-review

Harvard

Zegzhda, SA & Yushkov, MP 2001, 'Geometric interpretation of Poincare-Chetaev-Rumyantsev equations', Prikladnaya Matematika i Mekhanika, vol. 65, no. 5, pp. 746-754.

APA

Zegzhda, S. A., & Yushkov, M. P. (2001). Geometric interpretation of Poincare-Chetaev-Rumyantsev equations. Prikladnaya Matematika i Mekhanika, 65(5), 746-754.

Vancouver

Zegzhda SA, Yushkov MP. Geometric interpretation of Poincare-Chetaev-Rumyantsev equations. Prikladnaya Matematika i Mekhanika. 2001;65(5):746-754.

Author

Zegzhda, S. A. ; Yushkov, M. P. / Geometric interpretation of Poincare-Chetaev-Rumyantsev equations. In: Prikladnaya Matematika i Mekhanika. 2001 ; Vol. 65, No. 5. pp. 746-754.

BibTeX

@article{1965f1cac62b49ed8323c01ac50ee9be,
title = "Geometric interpretation of Poincare-Chetaev-Rumyantsev equations",
abstract = "A tangential space is introduced to variety of all possible mechanical system positions. That allows one to write its equations of motion in the form of single vector equation resembling the Newton second law. The Poincare-Chetaev-Rumyantsev equations and the other main equations of motion are obtained from this equation written for ideal nonlinear nonstationary nongolonomous constraints of the first order.",
author = "Zegzhda, {S. A.} and Yushkov, {M. P.}",
note = "Copyright: Copyright 2004 Elsevier Science B.V., Amsterdam. All rights reserved.",
year = "2001",
language = "English",
volume = "65",
pages = "746--754",
journal = "ПРИКЛАДНАЯ МАТЕМАТИКА И МЕХАНИКА",
issn = "0032-8235",
publisher = "Международная книга",
number = "5",

}

RIS

TY - JOUR

T1 - Geometric interpretation of Poincare-Chetaev-Rumyantsev equations

AU - Zegzhda, S. A.

AU - Yushkov, M. P.

N1 - Copyright: Copyright 2004 Elsevier Science B.V., Amsterdam. All rights reserved.

PY - 2001

Y1 - 2001

N2 - A tangential space is introduced to variety of all possible mechanical system positions. That allows one to write its equations of motion in the form of single vector equation resembling the Newton second law. The Poincare-Chetaev-Rumyantsev equations and the other main equations of motion are obtained from this equation written for ideal nonlinear nonstationary nongolonomous constraints of the first order.

AB - A tangential space is introduced to variety of all possible mechanical system positions. That allows one to write its equations of motion in the form of single vector equation resembling the Newton second law. The Poincare-Chetaev-Rumyantsev equations and the other main equations of motion are obtained from this equation written for ideal nonlinear nonstationary nongolonomous constraints of the first order.

UR - http://www.scopus.com/inward/record.url?scp=0035550708&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0035550708

VL - 65

SP - 746

EP - 754

JO - ПРИКЛАДНАЯ МАТЕМАТИКА И МЕХАНИКА

JF - ПРИКЛАДНАЯ МАТЕМАТИКА И МЕХАНИКА

SN - 0032-8235

IS - 5

ER -

ID: 71886271