The history of generalized “stacked bases” theorem origins from the result of Hill and Megibben on abelian groups. We extend this theorem for modules over semiperfect rings and as a consequence we show that for a submodule H of a projective module G over a semiperfect ring, the following conditions are equivalent: there exists a decomposition (Formula presented.) into a direct sum of indecomposable modules Pi, such that (Formula presented.) G/H is a direct sum of a family of modules, isomorphic to factor modules of principal indecomposable modules.

Translated title of the contributionОбобщённая теорема о согласованных базисах для модулей над полусовершенными кольцами
Original languageEnglish
Pages (from-to)2597-2605
Number of pages9
JournalCommunications in Algebra
Volume49
Issue number6
Early online date10 Feb 2021
DOIs
StatePublished - 10 Feb 2021

    Scopus subject areas

  • Algebra and Number Theory

    Research areas

  • Principal indecomposable module, projective module, semiperfect ring, stacked basis, stacked decomposition, direct sum decomposition and cancellation in associative algebras, bimodules and ideals

ID: 73698157