Research output: Contribution to journal › Article › peer-review
The history of generalized “stacked bases” theorem origins from the result of Hill and Megibben on abelian groups. We extend this theorem for modules over semiperfect rings and as a consequence we show that for a submodule H of a projective module G over a semiperfect ring, the following conditions are equivalent: there exists a decomposition (Formula presented.) into a direct sum of indecomposable modules Pi, such that (Formula presented.) G/H is a direct sum of a family of modules, isomorphic to factor modules of principal indecomposable modules.
| Translated title of the contribution | Обобщённая теорема о согласованных базисах для модулей над полусовершенными кольцами |
|---|---|
| Original language | English |
| Pages (from-to) | 2597-2605 |
| Number of pages | 9 |
| Journal | Communications in Algebra |
| Volume | 49 |
| Issue number | 6 |
| Early online date | 10 Feb 2021 |
| DOIs | |
| State | Published - 10 Feb 2021 |
ID: 73698157