Research output: Contribution to journal › Article › peer-review
General Parity Result and Cycle-Plus-Triangles Graphs. / Petrov, Fedor.
In: Journal of Graph Theory, Vol. 85, No. 4, 01.08.2017, p. 803-807.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - General Parity Result and Cycle-Plus-Triangles Graphs
AU - Petrov, Fedor
PY - 2017/8/1
Y1 - 2017/8/1
N2 - We generalize a parity result of Fleishner and Stiebitz that being combined with Alon–Tarsi polynomial method allowed them to prove that a 4-regular graph formed by a Hamiltonian cycle and several disjoint triangles is always 3-choosable. Also we show how a version of polynomial method gives slightly more combinatorial information about colorings than direct application of Alon's Combinatorial Nullstellensatz.
AB - We generalize a parity result of Fleishner and Stiebitz that being combined with Alon–Tarsi polynomial method allowed them to prove that a 4-regular graph formed by a Hamiltonian cycle and several disjoint triangles is always 3-choosable. Also we show how a version of polynomial method gives slightly more combinatorial information about colorings than direct application of Alon's Combinatorial Nullstellensatz.
KW - graph choosability
KW - parity
KW - polynomial method
UR - http://www.scopus.com/inward/record.url?scp=85006456785&partnerID=8YFLogxK
U2 - 10.1002/jgt.22107
DO - 10.1002/jgt.22107
M3 - Article
AN - SCOPUS:85006456785
VL - 85
SP - 803
EP - 807
JO - Journal of Graph Theory
JF - Journal of Graph Theory
SN - 0364-9024
IS - 4
ER -
ID: 36279958