Research output: Contribution to journal › Article › peer-review
Gas Exchange in Patients with Pulmonary Tuberculosis: Relationships with Pulmonary Poorly Communicating Fraction and Alveolar Volume. / Kiryukhina , Larisa D. ; Kokorina , Elena V. ; Gavrilov , Pavel V. ; Denisova , Nina V. ; Archakova, Liudmila I. ; Yablonskiy, Petr K. .
In: Journal of Respiration, Vol. 3, No. 2, 20.06.2023, p. 107-117.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Gas Exchange in Patients with Pulmonary Tuberculosis: Relationships with Pulmonary Poorly Communicating Fraction and Alveolar Volume
AU - Kiryukhina , Larisa D.
AU - Kokorina , Elena V.
AU - Gavrilov , Pavel V.
AU - Denisova , Nina V.
AU - Archakova, Liudmila I.
AU - Yablonskiy, Petr K.
N1 - Kiryukhina, L.D.; Kokorina, E.V.; Gavrilov, P.V.; Denisova, N.V.; Archakova, L.I.; Yablonskiy, P.K. Gas Exchange in Patients with Pulmonary Tuberculosis: Relationships with Pulmonary Poorly Communicating Fraction and Alveolar Volume. J. Respir. 2023, 3, 107-117. https://doi.org/10.3390/jor3020011
PY - 2023/6/20
Y1 - 2023/6/20
N2 - Tuberculosis-related lung damage is very different. Lung ventilation disorders have been studied in patients with pulmonary tuberculosis (TB) during the active process and after treatment, but the main causes of gas exchange changes have not been sufficiently studied. Investigation of diffusing lung capacity in combination with bodyplethysmography is useful for the interpretation of pulmonary gas exchange disorders. The aim was to determine the relationship of gas exchange with the value of alveolar volume (VA) and pulmonary poorly communicating fraction (PCF) in patients with pulmonary TB. A total of 292 patients (117/175 M/W) with verified pulmonary TB with smoking age less than 10 packs-years underwent spirometry, bodyplethysmography, and DLCO by the single-breath method. PCF was estimated calculating the difference between total lung capacity (TLC) and VA (% TLC). Patients with low DLCO had statistically significantly lower spirometric values (FVC, FEV1, FEV1/FVC, MMEF), lower TLC, higher airway resistance, RV/TLC, air-trapping volume, and PCF. The patients with low level of DLCO were divided into four groups depending on level VA and PCF. In most patients with infiltrative tuberculosis (50%), the leading syndrome of the DLCO decrease was alveolar-capillary damage. In patients with tuberculomas, the syndromes of alveolar capillary damage and pulmonary ventilation inhomogeneity were with the same frequency (43%). In patients with disseminated tuberculosis, the most frequent syndrome of the DLCO decrease was pulmonary ventilation inhomogeneity (33%), then alveolar-capillary damage (29%) and mixed (24%). In patients with cavernous tuberculosis, the leading syndrome of the DLCO decrease was mixed (39%), then alveolar capillary damage (25%) and pulmonary ventilation inhomogeneity (23%). The syndrome of gas exchange surface reduction in patients with disseminated and cavernous tuberculosis was less common (14%). In conclusion, an additional evaluation of the combination of PCF and VA increases the amount of clinical information obtained using the diffusion lung capacity measurements, since it allows identifying various syndromes of gas exchange impairment. The leading causes of diffusing capacity impairment vary by different types of pulmonary TB.
AB - Tuberculosis-related lung damage is very different. Lung ventilation disorders have been studied in patients with pulmonary tuberculosis (TB) during the active process and after treatment, but the main causes of gas exchange changes have not been sufficiently studied. Investigation of diffusing lung capacity in combination with bodyplethysmography is useful for the interpretation of pulmonary gas exchange disorders. The aim was to determine the relationship of gas exchange with the value of alveolar volume (VA) and pulmonary poorly communicating fraction (PCF) in patients with pulmonary TB. A total of 292 patients (117/175 M/W) with verified pulmonary TB with smoking age less than 10 packs-years underwent spirometry, bodyplethysmography, and DLCO by the single-breath method. PCF was estimated calculating the difference between total lung capacity (TLC) and VA (% TLC). Patients with low DLCO had statistically significantly lower spirometric values (FVC, FEV1, FEV1/FVC, MMEF), lower TLC, higher airway resistance, RV/TLC, air-trapping volume, and PCF. The patients with low level of DLCO were divided into four groups depending on level VA and PCF. In most patients with infiltrative tuberculosis (50%), the leading syndrome of the DLCO decrease was alveolar-capillary damage. In patients with tuberculomas, the syndromes of alveolar capillary damage and pulmonary ventilation inhomogeneity were with the same frequency (43%). In patients with disseminated tuberculosis, the most frequent syndrome of the DLCO decrease was pulmonary ventilation inhomogeneity (33%), then alveolar-capillary damage (29%) and mixed (24%). In patients with cavernous tuberculosis, the leading syndrome of the DLCO decrease was mixed (39%), then alveolar capillary damage (25%) and pulmonary ventilation inhomogeneity (23%). The syndrome of gas exchange surface reduction in patients with disseminated and cavernous tuberculosis was less common (14%). In conclusion, an additional evaluation of the combination of PCF and VA increases the amount of clinical information obtained using the diffusion lung capacity measurements, since it allows identifying various syndromes of gas exchange impairment. The leading causes of diffusing capacity impairment vary by different types of pulmonary TB.
KW - pulmonary tuberculosis
KW - diffusion lung capacity
KW - pulmonary gas exchange
KW - bodyplethysmography
KW - poorly communicating fraction
UR - https://www.mdpi.com/2673-527X/3/2/11
M3 - Article
VL - 3
SP - 107
EP - 117
JO - Journal of Respiration
JF - Journal of Respiration
SN - 2673-527X
IS - 2
ER -
ID: 106622232