Standard

Gap Problem for Separated Sequences and Beurling–Malliavin Theorem. / Белов, Юрий Сергеевич; Баранов, Антон Дмитриевич; Ulanovskii, Alexander.

In: Journal of Fourier Analysis and Applications, Vol. 23, No. 4, 01.08.2017, p. 877-885.

Research output: Contribution to journalArticlepeer-review

Harvard

Белов, ЮС, Баранов, АД & Ulanovskii, A 2017, 'Gap Problem for Separated Sequences and Beurling–Malliavin Theorem', Journal of Fourier Analysis and Applications, vol. 23, no. 4, pp. 877-885. https://doi.org/10.1007/s00041-016-9495-5

APA

Vancouver

Author

Белов, Юрий Сергеевич ; Баранов, Антон Дмитриевич ; Ulanovskii, Alexander. / Gap Problem for Separated Sequences and Beurling–Malliavin Theorem. In: Journal of Fourier Analysis and Applications. 2017 ; Vol. 23, No. 4. pp. 877-885.

BibTeX

@article{d858233076ea46fabd022970f43441b6,
title = "Gap Problem for Separated Sequences and Beurling–Malliavin Theorem",
abstract = "We show that the Gap Theorem for separated sequences by M. Mitkovski and A. Poltoratski can be deduced directly from the classical Beurling–Malliavin formula for the radius of completeness.",
author = "Белов, {Юрий Сергеевич} and Баранов, {Антон Дмитриевич} and Alexander Ulanovskii",
year = "2017",
month = aug,
day = "1",
doi = "10.1007/s00041-016-9495-5",
language = "English",
volume = "23",
pages = "877--885",
journal = "Journal of Fourier Analysis and Applications",
issn = "1069-5869",
publisher = "Birkhause Boston",
number = "4",

}

RIS

TY - JOUR

T1 - Gap Problem for Separated Sequences and Beurling–Malliavin Theorem

AU - Белов, Юрий Сергеевич

AU - Баранов, Антон Дмитриевич

AU - Ulanovskii, Alexander

PY - 2017/8/1

Y1 - 2017/8/1

N2 - We show that the Gap Theorem for separated sequences by M. Mitkovski and A. Poltoratski can be deduced directly from the classical Beurling–Malliavin formula for the radius of completeness.

AB - We show that the Gap Theorem for separated sequences by M. Mitkovski and A. Poltoratski can be deduced directly from the classical Beurling–Malliavin formula for the radius of completeness.

U2 - 10.1007/s00041-016-9495-5

DO - 10.1007/s00041-016-9495-5

M3 - Article

VL - 23

SP - 877

EP - 885

JO - Journal of Fourier Analysis and Applications

JF - Journal of Fourier Analysis and Applications

SN - 1069-5869

IS - 4

ER -

ID: 9453168