The fundamental solution for the generalized plane-stress problem of an infinite, isotropic elastic plate subjected to a point force is presented taking into account surface stresses in the plate faces. Constitutive equations is derived using the stress-strain relations for the bulk material and Gurtin–Murdoch’s linearized surface elasticity equations for the surfaces of the plate supposing that the residual surface stress is negligibly small compared with the surface elasticity parameters. The complex relations (Green functions) for the stresses and displacements in the explicit form are evaluated using Goursat–Kolosov complex potentials and Muskhelishvili representations. It is shown that in the case of the generalized plane stress, the fundamental solution depends on the thickness of the plate that is the size effect intrinsic to the nanoobjects