Standard

Frame set for shifted sinc-function. / Семенов, Андрей Вячеславович; Белов, Юрий Сергеевич.

In: Applied and Computational Harmonic Analysis, Vol. 71, 101654, 01.07.2024.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{80e020caa9b841e88aa8cd347757dc51,
title = "Frame set for shifted sinc-function",
abstract = "We prove that frame set Fg for imaginary shift of sinc-function [Formula presented] can be described as Fg={(α,β):αβ⩽1,β⩽|b|}. In addition, we prove that Fg={(α,β):αβ⩽1} for window functions g of the form [Formula presented] such that ∑k⩾1|ak|e2π|wbk|",
author = "Семенов, {Андрей Вячеславович} and Белов, {Юрий Сергеевич}",
year = "2024",
month = jul,
day = "1",
doi = "10.1016/j.acha.2024.101654",
language = "English",
volume = "71",
journal = "Applied and Computational Harmonic Analysis",
issn = "1063-5203",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Frame set for shifted sinc-function

AU - Семенов, Андрей Вячеславович

AU - Белов, Юрий Сергеевич

PY - 2024/7/1

Y1 - 2024/7/1

N2 - We prove that frame set Fg for imaginary shift of sinc-function [Formula presented] can be described as Fg={(α,β):αβ⩽1,β⩽|b|}. In addition, we prove that Fg={(α,β):αβ⩽1} for window functions g of the form [Formula presented] such that ∑k⩾1|ak|e2π|wbk|

AB - We prove that frame set Fg for imaginary shift of sinc-function [Formula presented] can be described as Fg={(α,β):αβ⩽1,β⩽|b|}. In addition, we prove that Fg={(α,β):αβ⩽1} for window functions g of the form [Formula presented] such that ∑k⩾1|ak|e2π|wbk|

UR - https://www.mendeley.com/catalogue/6fce81c3-999a-30df-b0d7-7473ab15a024/

U2 - 10.1016/j.acha.2024.101654

DO - 10.1016/j.acha.2024.101654

M3 - Article

VL - 71

JO - Applied and Computational Harmonic Analysis

JF - Applied and Computational Harmonic Analysis

SN - 1063-5203

M1 - 101654

ER -

ID: 122156462