Crossed molecular beam reactions of p-tolyl (C7H7) plus 1,3-butadiene (C4H6), p-tolyl (C7H7) plus 1,3-butadiene-d6 (C4D6), and p-tolyl-d7 (C7D7) plus 1,3-butadiene (C4H6) were carried out under single-collision conditions at collision energies of about 55 kJ mol–1. 6-Methyl-1,4-dihydronaphthalene was identified as the major reaction product formed at fractions of about 94% with the monocyclic isomer (trans-1-p-tolyl-1,3-butadiene) contributing only about 6%. The reaction is initiated by barrierless addition of the p-tolyl radical to the terminal carbon atom of the 1,3-butadiene via a van der Waals complex. The collision complex isomerizes via cyclization to a bicyclic intermediate, which then ejects a hydrogen atom from the bridging carbon to form 6-methyl-1,4-dihydronaphthalene through a tight exit transition state located about 27 kJ mol–1 above the separated products. This is the dominant channel under the present experimental conditions. Alternatively, the collision complex can also undergo hydrogen eject