Research output: Contribution to journal › Article › peer-review
First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near the Event Horizon. / (EHT Collaboration).
In: Astrophysical Journal Letters, Vol. 910, No. 1, L13, 01.03.2021.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near the Event Horizon
AU - (EHT Collaboration)
AU - Akiyama, Kazunori
AU - Algaba, Juan Carlos
AU - Alberdi, Antxon
AU - Alef, Walter
AU - Anantua, Richard
AU - Asada, Keiichi
AU - Azulay, Rebecca
AU - Baczko, Anne Kathrin
AU - Ball, David
AU - Baloković, Mislav
AU - Barrett, John
AU - Benson, Bradford A.
AU - Bintley, Dan
AU - Blackburn, Lindy
AU - Blundell, Raymond
AU - Boland, Wilfred
AU - Bouman, Katherine L.
AU - Bower, Geoffrey C.
AU - Boyce, Hope
AU - Bremer, Michael
AU - Brinkerink, Christiaan D.
AU - Brissenden, Roger
AU - Britzen, Silke
AU - Broderick, Avery E.
AU - Broguiere, Dominique
AU - Bronzwaer, Thomas
AU - Byun, Do Young
AU - Carlstrom, John E.
AU - Chael, Andrew
AU - Chan, Chi Kwan
AU - Chatterjee, Shami
AU - Chatterjee, Koushik
AU - Chen, Ming Tang
AU - Chen, Yongjun
AU - Chesler, Paul M.
AU - Cho, Ilje
AU - Christian, Pierre
AU - Conway, John E.
AU - Cordes, James M.
AU - Crawford, Thomas M.
AU - Crew, Geoffrey B.
AU - Cruz-Osorio, Alejandro
AU - Cui, Yuzhu
AU - Davelaar, Jordy
AU - De Laurentis, Mariafelicia
AU - Deane, Roger
AU - Dempsey, Jessica
AU - Desvignes, Gregory
AU - Dexter, Jason
AU - Jorstad, Svetlana
N1 - Publisher Copyright: © 2021. The Author(s). Published by the American Astronomical Society..
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n e ∼ 104-7 cm-3, magnetic field strength B ∼ 1-30 G, and electron temperature T e ∼ (1-12) 1010 K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) 10-4 M o˙ yr-1.
AB - Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n e ∼ 104-7 cm-3, magnetic field strength B ∼ 1-30 G, and electron temperature T e ∼ (1-12) 1010 K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) 10-4 M o˙ yr-1.
KW - Accretion
KW - Black holes
KW - Event horizons
KW - Jets
KW - Kerr black holes
KW - Magnetic fields
KW - Magnetohydrodynamics
KW - Plasma astrophysics
KW - Polarimetry
KW - Radiative transfer
KW - Radio jets
KW - Relativistic jets
KW - SAGITTARIUS-A-ASTERISK
KW - ADVECTION-DOMINATED ACCRETION
KW - RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS
KW - SUPERMASSIVE BLACK-HOLE
KW - GRMHD SIMULATIONS
KW - FARADAY-ROTATION
KW - CIRCULAR-POLARIZATION
KW - PARTICLE-ACCELERATION
KW - NONTHERMAL ELECTRONS
KW - SYNCHROTRON EMISSION
UR - http://www.scopus.com/inward/record.url?scp=85103626755&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/95363e76-b4f7-32af-86fd-4b116e169030/
U2 - 10.3847/2041-8213/abe4de
DO - 10.3847/2041-8213/abe4de
M3 - Article
AN - SCOPUS:85103626755
VL - 910
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
SN - 2041-8205
IS - 1
M1 - L13
ER -
ID: 86458636