• ALICE ITS project

A novel approach for designing the next generation of vertex detectors foresees to employ wafer-scale sensors that can be bent to truly cylindrical geometries after thinning them to thicknesses of 20–40 μm. To solidify this concept, the feasibility of operating bent MAPS was demonstrated using 1.5cm×3cm ALPIDE chips. Already with their thickness of 50µm, they can be successfully bent to radii of about 2cm without any signs of mechanical or electrical damage. During a subsequent characterisation using a 5.4GeV electron beam, it was further confirmed that they preserve their full electrical functionality as well as particle detection performance. In this article, the bending procedure and the setup used for characterisation are detailed. Furthermore, the analysis of the beam test, including the measurement of the detection efficiency as a function of beam position and local inclination angle, is discussed. The results show that the sensors maintain their excellent performance after bending to radii of 2cm, with detection efficiencies above 99.9% at typical operating conditions, paving the way towards a new class of detectors with unprecedented low material budget and ideal geometrical properties.

Original languageEnglish
Article number166280
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume1028
DOIs
StatePublished - 1 Apr 2022

    Research areas

  • Bent sensors, Monolithic Active Pixel Sensors (MAPS), Solid state detectors

    Scopus subject areas

  • Nuclear and High Energy Physics
  • Instrumentation

ID: 98814367