We investigate 1D exoplanetary distributions using a novel analysis algorithm based on the continuous wavelet transform. The analysis pipeline includes an estimation of the wavelet transform of the probability density function (p.d.f.) without pre-binning, use of optimized wavelets, a rigorous significance testing of the patterns revealed in the p.d.f., and an optimized minimum-noise reconstruction of the p.d.f. via matching pursuit iterations.

In the distribution of orbital periods, P, our analysis revealed a narrow subfamily of exoplanets within the broad family of "warm Jupiters", or massive giants with P greater than or similar to 300 d, which are often deemed to be related with the iceline accumulation in a protoplanetary disk. We detected a p.d.f. pattern that represents an upturn followed by an overshooting peak spanning P similar to 300-600 d, right beyond the "period valley". It is separated from the other planets by p.d.f. concavities from both sides. It has at least 2-sigma significance.

In the distribution of planet radii, R, and using the California Kepler Survey sample properly cleaned, we confirm the hints of a bimodality with two peaks about R =1.3 R-circle plus and R = 2.4 R-circle plus, and the "evaporation valley" between them. However, we obtain just a modest significance for this pattern, 2-sigma only at the best. Besides, our follow-up application of the Hartigan and Hartigan dip test for unimodality returns 3 per cent false alarm probability (merely 2.2-sigma significance), contrary to 0.14 per cent (or 3.2-sigma), as claimed by Fulton et al. (2017).
Original languageEnglish
Article number192
Number of pages23
JournalAstrophysics and Space Science
Volume363
Issue number9
DOIs
StatePublished - 1 Sep 2018

    Research areas

  • Astronomical data bases: miscellaneous, Methods: data analysis, Methods: statistical, Planetary systems, Stars: statistics, STATISTICAL SIGNIFICANCE, TIME-SERIES ANALYSIS, PERIODOGRAM PEAKS, DETERMINISTIC MODEL, ICE LINE, MASS, PLANETARY FORMATION, SPECTRUM

    Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

ID: 33231533