Research output: Contribution to journal › Article › peer-review
Features of inorganic nanocrystals formation in conditions of successive ionic layers deposition in water solutions and the Co(II)Co(III) 2D layered double hydroxide synthesis. / Tolstoy, V. P.; Lobinsky, A. A.; Kaneva, M. V.
In: Journal of Molecular Liquids, Vol. 282, 15.05.2019, p. 32-38.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Features of inorganic nanocrystals formation in conditions of successive ionic layers deposition in water solutions and the Co(II)Co(III) 2D layered double hydroxide synthesis
AU - Tolstoy, V. P.
AU - Lobinsky, A. A.
AU - Kaneva, M. V.
PY - 2019/5/15
Y1 - 2019/5/15
N2 - The article provides a brief overview of the results concerning synthesis of inorganic nanocrystals including such compounds as Ag, Au, NiO 1+x ∙nH 2 O, CoAl and ZnCo layered double hydroxides (LDH) by Successive Ionic Layer Deposition (SILD) method in aqueous solutions. It is shown that by specifying the synthesis conditions, for example, the number of SILD cycles, it is possible to change the size of nanocrystals, and for 2D crystals - their orientation with respect to the substrate. Along with this, in the article for the first time a novel SILD route of Co(II)Co(III) LDH synthesis is presented. It was stated that the nanolayers of this compound consist of randomly oriented 2D nanocrystals aggregates with hexagonal hydrotalcite-like crystal structure, each of which has a thickness of less than 3 nm. The method is based on the sequential processing of the substrate in aqueous solutions of CoCl 2 and NaBH 4 salts of certain concentrations and intermediate washing excess of these reagents with distilled water. The obtained nanolayers were characterized via SEM, TEM, XRD, FT-IR and XPS methods. Models of chemical processes occurring on the surface during the synthesis were suggested on the basis of the obtained experimental results. The samples were acquired on the nickel foam (NF) surface and were studied as electrodes for pseudocapacitors and as electrocatalysts for oxygen evolution reaction (OER) in alkaline medium. The electrodes of the pseudocapacitor showed high specific capacitance (2260 F/g at the current density of 1 A/g), as well as good cyclic stability (after 500 charge-discharge cycles, the capacitance drop do not exceed 2%). In addition, the obtained material showed a high electrocatalytic activity for OER in alkaline medium, characterized at a current density of 10 mA/cm 2 by a relatively low overpotential of 285 mV and Tafel slope of 95 mV/dec.
AB - The article provides a brief overview of the results concerning synthesis of inorganic nanocrystals including such compounds as Ag, Au, NiO 1+x ∙nH 2 O, CoAl and ZnCo layered double hydroxides (LDH) by Successive Ionic Layer Deposition (SILD) method in aqueous solutions. It is shown that by specifying the synthesis conditions, for example, the number of SILD cycles, it is possible to change the size of nanocrystals, and for 2D crystals - their orientation with respect to the substrate. Along with this, in the article for the first time a novel SILD route of Co(II)Co(III) LDH synthesis is presented. It was stated that the nanolayers of this compound consist of randomly oriented 2D nanocrystals aggregates with hexagonal hydrotalcite-like crystal structure, each of which has a thickness of less than 3 nm. The method is based on the sequential processing of the substrate in aqueous solutions of CoCl 2 and NaBH 4 salts of certain concentrations and intermediate washing excess of these reagents with distilled water. The obtained nanolayers were characterized via SEM, TEM, XRD, FT-IR and XPS methods. Models of chemical processes occurring on the surface during the synthesis were suggested on the basis of the obtained experimental results. The samples were acquired on the nickel foam (NF) surface and were studied as electrodes for pseudocapacitors and as electrocatalysts for oxygen evolution reaction (OER) in alkaline medium. The electrodes of the pseudocapacitor showed high specific capacitance (2260 F/g at the current density of 1 A/g), as well as good cyclic stability (after 500 charge-discharge cycles, the capacitance drop do not exceed 2%). In addition, the obtained material showed a high electrocatalytic activity for OER in alkaline medium, characterized at a current density of 10 mA/cm 2 by a relatively low overpotential of 285 mV and Tafel slope of 95 mV/dec.
KW - Cobalt hydroxide
KW - Electrocatalysts
KW - Layered double hydroxide
KW - OER
KW - SILD
KW - Supercapacitors
KW - Water electrolysis
KW - GRAPHENE OXIDE
KW - CARBON
KW - PERFORMANCE
KW - NANOSHEETS
KW - COMPOSITE
KW - ENERGY-CONVERSION
KW - OXYGEN REDUCTION
KW - SURFACE
KW - ELECTRODE
KW - COBALT
UR - http://www.scopus.com/inward/record.url?scp=85062449805&partnerID=8YFLogxK
U2 - 10.1016/j.molliq.2019.02.067
DO - 10.1016/j.molliq.2019.02.067
M3 - Article
AN - SCOPUS:85062449805
VL - 282
SP - 32
EP - 38
JO - Journal of Molecular Liquids
JF - Journal of Molecular Liquids
SN - 0167-7322
ER -
ID: 42363226