Standard

Fabry–Perot interferometer with a quantum well mirror for controllable dispersion compensation. / Митряхин, Виктор Николаевич; Шапочкин, Павел Юрьевич; Назаров, Роман Сергеевич; Ефимов, Юрий Петрович; Елисеев, Сергей Алексеевич; Ловцюс, Вячеслав Альгердович; Капитонов, Юрий Владимирович.

In: Optics Letters, Vol. 50, No. 19, 01.10.2025, p. 6036-6039.

Research output: Contribution to journalArticlepeer-review

Harvard

Митряхин, ВН, Шапочкин, ПЮ, Назаров, РС, Ефимов, ЮП, Елисеев, СА, Ловцюс, ВА & Капитонов, ЮВ 2025, 'Fabry–Perot interferometer with a quantum well mirror for controllable dispersion compensation', Optics Letters, vol. 50, no. 19, pp. 6036-6039. https://doi.org/10.1364/ol.572092

APA

Митряхин, В. Н., Шапочкин, П. Ю., Назаров, Р. С., Ефимов, Ю. П., Елисеев, С. А., Ловцюс, В. А., & Капитонов, Ю. В. (2025). Fabry–Perot interferometer with a quantum well mirror for controllable dispersion compensation. Optics Letters, 50(19), 6036-6039. https://doi.org/10.1364/ol.572092

Vancouver

Митряхин ВН, Шапочкин ПЮ, Назаров РС, Ефимов ЮП, Елисеев СА, Ловцюс ВА et al. Fabry–Perot interferometer with a quantum well mirror for controllable dispersion compensation. Optics Letters. 2025 Oct 1;50(19):6036-6039. https://doi.org/10.1364/ol.572092

Author

Митряхин, Виктор Николаевич ; Шапочкин, Павел Юрьевич ; Назаров, Роман Сергеевич ; Ефимов, Юрий Петрович ; Елисеев, Сергей Алексеевич ; Ловцюс, Вячеслав Альгердович ; Капитонов, Юрий Владимирович. / Fabry–Perot interferometer with a quantum well mirror for controllable dispersion compensation. In: Optics Letters. 2025 ; Vol. 50, No. 19. pp. 6036-6039.

BibTeX

@article{39fbf83f6917446a949034f3cfff4136,
title = "Fabry–Perot interferometer with a quantum well mirror for controllable dispersion compensation",
abstract = "In this work, we investigate the possibility of controlling second-order dispersion in a monolithic Fabry–Perot interferometer based on epitaxial heterostructure with a quantum well (QW) serving as a bottom mirror. Careful choice of heterostructure parameters and experimental conditions makes it possible to introduce negative dispersion in a very narrow spectral region of QW excitonic resonance while maintaining a constant reflection coefficient across this region. The feasibility of the concept is demonstrated for heterostructures with InGaAs/GaAs QWs at cryogenic temperatures. We also propose an active device design that can switch the dispersion compensation on and off by controlling the exciton ensemble{\textquoteright}s environment.",
author = "Митряхин, {Виктор Николаевич} and Шапочкин, {Павел Юрьевич} and Назаров, {Роман Сергеевич} and Ефимов, {Юрий Петрович} and Елисеев, {Сергей Алексеевич} and Ловцюс, {Вячеслав Альгердович} and Капитонов, {Юрий Владимирович}",
year = "2025",
month = oct,
day = "1",
doi = "10.1364/ol.572092",
language = "English",
volume = "50",
pages = "6036--6039",
journal = "Optics Letters",
issn = "0146-9592",
publisher = "American Institute of Physics",
number = "19",

}

RIS

TY - JOUR

T1 - Fabry–Perot interferometer with a quantum well mirror for controllable dispersion compensation

AU - Митряхин, Виктор Николаевич

AU - Шапочкин, Павел Юрьевич

AU - Назаров, Роман Сергеевич

AU - Ефимов, Юрий Петрович

AU - Елисеев, Сергей Алексеевич

AU - Ловцюс, Вячеслав Альгердович

AU - Капитонов, Юрий Владимирович

PY - 2025/10/1

Y1 - 2025/10/1

N2 - In this work, we investigate the possibility of controlling second-order dispersion in a monolithic Fabry–Perot interferometer based on epitaxial heterostructure with a quantum well (QW) serving as a bottom mirror. Careful choice of heterostructure parameters and experimental conditions makes it possible to introduce negative dispersion in a very narrow spectral region of QW excitonic resonance while maintaining a constant reflection coefficient across this region. The feasibility of the concept is demonstrated for heterostructures with InGaAs/GaAs QWs at cryogenic temperatures. We also propose an active device design that can switch the dispersion compensation on and off by controlling the exciton ensemble’s environment.

AB - In this work, we investigate the possibility of controlling second-order dispersion in a monolithic Fabry–Perot interferometer based on epitaxial heterostructure with a quantum well (QW) serving as a bottom mirror. Careful choice of heterostructure parameters and experimental conditions makes it possible to introduce negative dispersion in a very narrow spectral region of QW excitonic resonance while maintaining a constant reflection coefficient across this region. The feasibility of the concept is demonstrated for heterostructures with InGaAs/GaAs QWs at cryogenic temperatures. We also propose an active device design that can switch the dispersion compensation on and off by controlling the exciton ensemble’s environment.

UR - https://www.mendeley.com/catalogue/85ecc1ad-3066-3f32-8837-7f080d53a8b6/

U2 - 10.1364/ol.572092

DO - 10.1364/ol.572092

M3 - Article

VL - 50

SP - 6036

EP - 6039

JO - Optics Letters

JF - Optics Letters

SN - 0146-9592

IS - 19

ER -

ID: 141743428