A plane diagram D of a knot is said to be semi-meandric if D is the union of two simple smooth arcs. Every tame knot has a semi-meandric diagram. We use this fact to define a new knot invariant: the semi-meandric crossing number. Applying the technique of Gauss Codes and a specific algo- rithm transforming arbitrary knot diagrams to semi-meandric ones we obtain estimates on this invariant.
Translated title of the contributionОценки на полумеандрическое число перекрестков классических узлов
Original languageEnglish
Title of host publicationPolynomial Computer Algebra '2017
Subtitle of host publicationThe International Conference
Place of PublicationСПб.
PublisherИздательство «ВВМ»
Pages21-23
ISBN (Print)978-5-9651-1057-5
StatePublished - 2017
EventPolynomial Computer Algebra '2017 - Euler International Mathematical Institute, Санкт-Петербург, Russian Federation
Duration: 17 Apr 201722 Apr 2017
http://pca.pdmi.ras.ru/2017/program

Conference

ConferencePolynomial Computer Algebra '2017
Abbreviated titlePCA-2017
Country/TerritoryRussian Federation
CityСанкт-Петербург
Period17/04/1722/04/17
Internet address

    Scopus subject areas

  • Mathematics(all)

ID: 15680871