Standard

Estimates for Taylor series method to polynomial total systems of PDEs. / Babadzanjanz, L. K. ; Pototskaya, I. Yu. ; Pupysheva, Yu. Yu. .

In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Vol. 17, No. 1, 2021, p. 27-39.

Research output: Contribution to journalArticlepeer-review

Harvard

Babadzanjanz, LK, Pototskaya, IY & Pupysheva, YY 2021, 'Estimates for Taylor series method to polynomial total systems of PDEs', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, vol. 17, no. 1, pp. 27-39.

APA

Babadzanjanz, L. K., Pototskaya, I. Y., & Pupysheva, Y. Y. (2021). Estimates for Taylor series method to polynomial total systems of PDEs. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, 17(1), 27-39.

Vancouver

Babadzanjanz LK, Pototskaya IY, Pupysheva YY. Estimates for Taylor series method to polynomial total systems of PDEs. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2021;17(1):27-39.

Author

Babadzanjanz, L. K. ; Pototskaya, I. Yu. ; Pupysheva, Yu. Yu. . / Estimates for Taylor series method to polynomial total systems of PDEs. In: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2021 ; Vol. 17, No. 1. pp. 27-39.

BibTeX

@article{ad56c0854fff494896c12f67a9561cdb,
title = "Estimates for Taylor series method to polynomial total systems of PDEs",
abstract = "Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.",
keywords = "Taylor Series Method, total polynomial PDE system, polynomial systems, Numerical PDE system integration",
author = "Babadzanjanz, {L. K.} and Pototskaya, {I. Yu.} and Pupysheva, {Yu. Yu.}",
year = "2021",
language = "English",
volume = "17",
pages = "27--39",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "1",

}

RIS

TY - JOUR

T1 - Estimates for Taylor series method to polynomial total systems of PDEs

AU - Babadzanjanz, L. K.

AU - Pototskaya, I. Yu.

AU - Pupysheva, Yu. Yu.

PY - 2021

Y1 - 2021

N2 - Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.

AB - Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.

KW - Taylor Series Method

KW - total polynomial PDE system

KW - polynomial systems

KW - Numerical PDE system integration

UR - http://vestnik.spbu.ru/html21/s10/s10v1/03.pdf

UR - https://www.elibrary.ru/item.asp?id=45687746

M3 - Article

VL - 17

SP - 27

EP - 39

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 1

ER -

ID: 91770643