Standard

Enhancing laser beam performance by interfering intense laser beamlets. / Morace, A.; Iwata, N.; Sentoku, Y.; Mima, K.; Arikawa, Y.; Yogo, A.; Andreev, A.; Tosaki, S.; Vaisseau, X.; Abe, Y.; Kojima, S.; Sakata, S.; Hata, M.; Lee, S.; Matsuo, K.; Kamitsukasa, N.; Norimatsu, T.; Kawanaka, J.; Tokita, S.; Miyanaga, N.; Shiraga, H.; Sakawa, Y.; Nakai, M.; Nishimura, H.; Azechi, H.; Fujioka, S.; Kodama, R.

In: Nature Communications, Vol. 10, No. 1, 2995, 01.12.2019.

Research output: Contribution to journalArticlepeer-review

Harvard

Morace, A, Iwata, N, Sentoku, Y, Mima, K, Arikawa, Y, Yogo, A, Andreev, A, Tosaki, S, Vaisseau, X, Abe, Y, Kojima, S, Sakata, S, Hata, M, Lee, S, Matsuo, K, Kamitsukasa, N, Norimatsu, T, Kawanaka, J, Tokita, S, Miyanaga, N, Shiraga, H, Sakawa, Y, Nakai, M, Nishimura, H, Azechi, H, Fujioka, S & Kodama, R 2019, 'Enhancing laser beam performance by interfering intense laser beamlets', Nature Communications, vol. 10, no. 1, 2995. https://doi.org/10.1038/s41467-019-10997-1

APA

Morace, A., Iwata, N., Sentoku, Y., Mima, K., Arikawa, Y., Yogo, A., Andreev, A., Tosaki, S., Vaisseau, X., Abe, Y., Kojima, S., Sakata, S., Hata, M., Lee, S., Matsuo, K., Kamitsukasa, N., Norimatsu, T., Kawanaka, J., Tokita, S., ... Kodama, R. (2019). Enhancing laser beam performance by interfering intense laser beamlets. Nature Communications, 10(1), [2995]. https://doi.org/10.1038/s41467-019-10997-1

Vancouver

Morace A, Iwata N, Sentoku Y, Mima K, Arikawa Y, Yogo A et al. Enhancing laser beam performance by interfering intense laser beamlets. Nature Communications. 2019 Dec 1;10(1). 2995. https://doi.org/10.1038/s41467-019-10997-1

Author

Morace, A. ; Iwata, N. ; Sentoku, Y. ; Mima, K. ; Arikawa, Y. ; Yogo, A. ; Andreev, A. ; Tosaki, S. ; Vaisseau, X. ; Abe, Y. ; Kojima, S. ; Sakata, S. ; Hata, M. ; Lee, S. ; Matsuo, K. ; Kamitsukasa, N. ; Norimatsu, T. ; Kawanaka, J. ; Tokita, S. ; Miyanaga, N. ; Shiraga, H. ; Sakawa, Y. ; Nakai, M. ; Nishimura, H. ; Azechi, H. ; Fujioka, S. ; Kodama, R. / Enhancing laser beam performance by interfering intense laser beamlets. In: Nature Communications. 2019 ; Vol. 10, No. 1.

BibTeX

@article{0d4d76a7b6874e669e4db71ed25b1906,
title = "Enhancing laser beam performance by interfering intense laser beamlets",
abstract = "Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.",
author = "A. Morace and N. Iwata and Y. Sentoku and K. Mima and Y. Arikawa and A. Yogo and A. Andreev and S. Tosaki and X. Vaisseau and Y. Abe and S. Kojima and S. Sakata and M. Hata and S. Lee and K. Matsuo and N. Kamitsukasa and T. Norimatsu and J. Kawanaka and S. Tokita and N. Miyanaga and H. Shiraga and Y. Sakawa and M. Nakai and H. Nishimura and H. Azechi and S. Fujioka and R. Kodama",
year = "2019",
month = dec,
day = "1",
doi = "10.1038/s41467-019-10997-1",
language = "English",
volume = "10",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

RIS

TY - JOUR

T1 - Enhancing laser beam performance by interfering intense laser beamlets

AU - Morace, A.

AU - Iwata, N.

AU - Sentoku, Y.

AU - Mima, K.

AU - Arikawa, Y.

AU - Yogo, A.

AU - Andreev, A.

AU - Tosaki, S.

AU - Vaisseau, X.

AU - Abe, Y.

AU - Kojima, S.

AU - Sakata, S.

AU - Hata, M.

AU - Lee, S.

AU - Matsuo, K.

AU - Kamitsukasa, N.

AU - Norimatsu, T.

AU - Kawanaka, J.

AU - Tokita, S.

AU - Miyanaga, N.

AU - Shiraga, H.

AU - Sakawa, Y.

AU - Nakai, M.

AU - Nishimura, H.

AU - Azechi, H.

AU - Fujioka, S.

AU - Kodama, R.

PY - 2019/12/1

Y1 - 2019/12/1

N2 - Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.

AB - Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.

UR - http://www.scopus.com/inward/record.url?scp=85068464282&partnerID=8YFLogxK

U2 - 10.1038/s41467-019-10997-1

DO - 10.1038/s41467-019-10997-1

M3 - Article

C2 - 31278266

AN - SCOPUS:85068464282

VL - 10

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 2995

ER -

ID: 53220147