Standard

Enhanced electrochemical performance of MoS2 anode material with novel composite binder. / Volkov, Alexey I.; Eliseeva, Svetlana N.; Tolstopjatova, Elena G.; Kondratiev, Veniamin V.

In: Journal of Solid State Electrochemistry, Vol. 24, No. 7, 01.07.2020, p. 1607-1614.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{d2e0abb88f83453ba0f482b8e411d010,
title = "Enhanced electrochemical performance of MoS2 anode material with novel composite binder",
abstract = "A simple and green approach for creating a highly capacitive molybdenum disulphide (MoS2) anode material for lithium-ion batteries is proposed. The electrode composition consists of MoS2 and conductive water-based binder PEDOT:PSS/CMC (poly(3,4-ethylenedioxythiophene)/poly(styrenesulphonate)/carboxymethyl cellulose). The electrochemical performance of modified electrodes is markedly superior to those with conventional PVDF (polyvinylidene fluoride) and carbon black composition. The electrode provides initial capacity of 1090 mA h g−1 at 0.1 mA g−1, maintains 410 mA h g−1 at 2 mA g−1 and retains 78% of initial capacity after 100 charge-discharge cycles.",
keywords = "Composites, Energy storage, Lithium-ion batteries, Molybdenum disulphide, PEDOT:PSS, CARBON, ANODE MATERIAL, MICROSPHERES, MOLYBDENUM-DISULFIDE, BATTERY ANODE, PSS, MOS2 NANOSHEETS, NANOCOMPOSITES, PEDOT, HIGH-CAPACITY, LITHIUM, HOLLOW NANOSPHERES",
author = "Volkov, {Alexey I.} and Eliseeva, {Svetlana N.} and Tolstopjatova, {Elena G.} and Kondratiev, {Veniamin V.}",
year = "2020",
month = jul,
day = "1",
doi = "10.1007/s10008-020-04701-3",
language = "English",
volume = "24",
pages = "1607--1614",
journal = "Journal of Solid State Electrochemistry",
issn = "1432-8488",
publisher = "Springer Nature",
number = "7",

}

RIS

TY - JOUR

T1 - Enhanced electrochemical performance of MoS2 anode material with novel composite binder

AU - Volkov, Alexey I.

AU - Eliseeva, Svetlana N.

AU - Tolstopjatova, Elena G.

AU - Kondratiev, Veniamin V.

PY - 2020/7/1

Y1 - 2020/7/1

N2 - A simple and green approach for creating a highly capacitive molybdenum disulphide (MoS2) anode material for lithium-ion batteries is proposed. The electrode composition consists of MoS2 and conductive water-based binder PEDOT:PSS/CMC (poly(3,4-ethylenedioxythiophene)/poly(styrenesulphonate)/carboxymethyl cellulose). The electrochemical performance of modified electrodes is markedly superior to those with conventional PVDF (polyvinylidene fluoride) and carbon black composition. The electrode provides initial capacity of 1090 mA h g−1 at 0.1 mA g−1, maintains 410 mA h g−1 at 2 mA g−1 and retains 78% of initial capacity after 100 charge-discharge cycles.

AB - A simple and green approach for creating a highly capacitive molybdenum disulphide (MoS2) anode material for lithium-ion batteries is proposed. The electrode composition consists of MoS2 and conductive water-based binder PEDOT:PSS/CMC (poly(3,4-ethylenedioxythiophene)/poly(styrenesulphonate)/carboxymethyl cellulose). The electrochemical performance of modified electrodes is markedly superior to those with conventional PVDF (polyvinylidene fluoride) and carbon black composition. The electrode provides initial capacity of 1090 mA h g−1 at 0.1 mA g−1, maintains 410 mA h g−1 at 2 mA g−1 and retains 78% of initial capacity after 100 charge-discharge cycles.

KW - Composites

KW - Energy storage

KW - Lithium-ion batteries

KW - Molybdenum disulphide

KW - PEDOT:PSS

KW - CARBON

KW - ANODE MATERIAL

KW - MICROSPHERES

KW - MOLYBDENUM-DISULFIDE

KW - BATTERY ANODE

KW - PSS

KW - MOS2 NANOSHEETS

KW - NANOCOMPOSITES

KW - PEDOT

KW - HIGH-CAPACITY

KW - LITHIUM

KW - HOLLOW NANOSPHERES

UR - http://www.scopus.com/inward/record.url?scp=85086332386&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/1b859247-6c27-3796-8173-c43a8e04ea8f/

U2 - 10.1007/s10008-020-04701-3

DO - 10.1007/s10008-020-04701-3

M3 - Article

AN - SCOPUS:85086332386

VL - 24

SP - 1607

EP - 1614

JO - Journal of Solid State Electrochemistry

JF - Journal of Solid State Electrochemistry

SN - 1432-8488

IS - 7

ER -

ID: 60236468