Standard

Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN’s Low Altitude Perspective. / Angelopoulos, V.; Zhang, X.-J.; Artemyev, A. V.; Mourenas, D.; Tsai, E.; Wilkins, C.; Runov, A.; Liu, J.; Turner, D. L.; Li, W.; Khurana, K.; Wirz, R. E.; Sergeev, V. A.; Meng, X.; Wu, J.; Hartinger, M. D.; Raita, T.; Shen, Y.; An, X.; Shi, X.; Bashir, M. F.; Shen, X.; Gan, L.; Qin, M.; Capannolo, L.; Ma, Q.; Russell, C. L.; Masongsong, E. V.; Caron, R.; He, I.; Iglesias, L.; Jha, S.; King, J.; Kumar, S.; Le, K.; Mao, J.; McDermott, A.; Nguyen, K.; Norris, A.; Palla, A.; Roosnovo, A.; Tam, J.; Xie, E.; Yap, R. C.; Ye, S.; Young, C.; Adair, L. A.; Shaffer, C.; Chung, M.; Cruce, P.; Lawson, M.; Leneman, D.; Allen, M.; Anderson, M.; Arreola-Zamora, M.; Artinger, J.; Asher, J.; Branchevsky, D.; Cliffe, M.; Colton, K.; Costello, C.; Depe, D.; Domae, B. W.; Eldin, S.; Fitzgibbon, L.; Flemming, A.; Frederick, D. M.; Gilbert, A.; Hesford, B.; Krieger, R.; Lian, K.; McKinney, E.; Miller, J. P.; Pedersen, C.; Qu, Z.; Rozario, R.; Rubly, M.; Seaton, R.; Subramanian, A.; Sundin, S. R.; Tan, A.; Thomlinson, D.; Turner, W.; Wing, G.; Wong, C.; Zarifian, A.

In: Space Science Reviews, Vol. 219, No. 5, 11.07.2023, p. 37.

Research output: Contribution to journalReview articlepeer-review

Harvard

Angelopoulos, V, Zhang, X-J, Artemyev, AV, Mourenas, D, Tsai, E, Wilkins, C, Runov, A, Liu, J, Turner, DL, Li, W, Khurana, K, Wirz, RE, Sergeev, VA, Meng, X, Wu, J, Hartinger, MD, Raita, T, Shen, Y, An, X, Shi, X, Bashir, MF, Shen, X, Gan, L, Qin, M, Capannolo, L, Ma, Q, Russell, CL, Masongsong, EV, Caron, R, He, I, Iglesias, L, Jha, S, King, J, Kumar, S, Le, K, Mao, J, McDermott, A, Nguyen, K, Norris, A, Palla, A, Roosnovo, A, Tam, J, Xie, E, Yap, RC, Ye, S, Young, C, Adair, LA, Shaffer, C, Chung, M, Cruce, P, Lawson, M, Leneman, D, Allen, M, Anderson, M, Arreola-Zamora, M, Artinger, J, Asher, J, Branchevsky, D, Cliffe, M, Colton, K, Costello, C, Depe, D, Domae, BW, Eldin, S, Fitzgibbon, L, Flemming, A, Frederick, DM, Gilbert, A, Hesford, B, Krieger, R, Lian, K, McKinney, E, Miller, JP, Pedersen, C, Qu, Z, Rozario, R, Rubly, M, Seaton, R, Subramanian, A, Sundin, SR, Tan, A, Thomlinson, D, Turner, W, Wing, G, Wong, C & Zarifian, A 2023, 'Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN’s Low Altitude Perspective', Space Science Reviews, vol. 219, no. 5, pp. 37. https://doi.org/10.1007/s11214-023-00984-w, https://doi.org/10.1007/s11214-023-00984-w

APA

Angelopoulos, V., Zhang, X-J., Artemyev, A. V., Mourenas, D., Tsai, E., Wilkins, C., Runov, A., Liu, J., Turner, D. L., Li, W., Khurana, K., Wirz, R. E., Sergeev, V. A., Meng, X., Wu, J., Hartinger, M. D., Raita, T., Shen, Y., An, X., ... Zarifian, A. (2023). Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN’s Low Altitude Perspective. Space Science Reviews, 219(5), 37. https://doi.org/10.1007/s11214-023-00984-w, https://doi.org/10.1007/s11214-023-00984-w

Vancouver

Author

Angelopoulos, V. ; Zhang, X.-J. ; Artemyev, A. V. ; Mourenas, D. ; Tsai, E. ; Wilkins, C. ; Runov, A. ; Liu, J. ; Turner, D. L. ; Li, W. ; Khurana, K. ; Wirz, R. E. ; Sergeev, V. A. ; Meng, X. ; Wu, J. ; Hartinger, M. D. ; Raita, T. ; Shen, Y. ; An, X. ; Shi, X. ; Bashir, M. F. ; Shen, X. ; Gan, L. ; Qin, M. ; Capannolo, L. ; Ma, Q. ; Russell, C. L. ; Masongsong, E. V. ; Caron, R. ; He, I. ; Iglesias, L. ; Jha, S. ; King, J. ; Kumar, S. ; Le, K. ; Mao, J. ; McDermott, A. ; Nguyen, K. ; Norris, A. ; Palla, A. ; Roosnovo, A. ; Tam, J. ; Xie, E. ; Yap, R. C. ; Ye, S. ; Young, C. ; Adair, L. A. ; Shaffer, C. ; Chung, M. ; Cruce, P. ; Lawson, M. ; Leneman, D. ; Allen, M. ; Anderson, M. ; Arreola-Zamora, M. ; Artinger, J. ; Asher, J. ; Branchevsky, D. ; Cliffe, M. ; Colton, K. ; Costello, C. ; Depe, D. ; Domae, B. W. ; Eldin, S. ; Fitzgibbon, L. ; Flemming, A. ; Frederick, D. M. ; Gilbert, A. ; Hesford, B. ; Krieger, R. ; Lian, K. ; McKinney, E. ; Miller, J. P. ; Pedersen, C. ; Qu, Z. ; Rozario, R. ; Rubly, M. ; Seaton, R. ; Subramanian, A. ; Sundin, S. R. ; Tan, A. ; Thomlinson, D. ; Turner, W. ; Wing, G. ; Wong, C. ; Zarifian, A. / Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN’s Low Altitude Perspective. In: Space Science Reviews. 2023 ; Vol. 219, No. 5. pp. 37.

BibTeX

@article{f3a9d1ee0f2242459d672a61953cca7d,
title = "Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN{\textquoteright}s Low Altitude Perspective",
abstract = "We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wavedriven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting lowaltitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energyspectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or L ∼ 0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in localtime, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at L ∼ 5 − 7 at dusk, while a smaller subset exists at L ∼ 8 − 12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio{\textquoteright}s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of ∼ 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequencyEMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation ",
keywords = "ENERGETIC ELECTRON-PRECIPITATION, EMIC waves, Electromagnetic ion cyclotron waves, Relativistic electron precipitation, Radiation belts, Magnetosphere, Whistler-mode chorus, Plasma waves",
author = "V. Angelopoulos and X.-J. Zhang and Artemyev, {A. V.} and D. Mourenas and E. Tsai and C. Wilkins and A. Runov and J. Liu and Turner, {D. L.} and W. Li and K. Khurana and Wirz, {R. E.} and Sergeev, {V. A.} and X. Meng and J. Wu and Hartinger, {M. D.} and T. Raita and Y. Shen and X. An and X. Shi and Bashir, {M. F.} and X. Shen and L. Gan and M. Qin and L. Capannolo and Q. Ma and Russell, {C. L.} and Masongsong, {E. V.} and R. Caron and I. He and L. Iglesias and S. Jha and J. King and S. Kumar and K. Le and J. Mao and A. McDermott and K. Nguyen and A. Norris and A. Palla and A. Roosnovo and J. Tam and E. Xie and Yap, {R. C.} and S. Ye and C. Young and Adair, {L. A.} and C. Shaffer and M. Chung and P. Cruce and M. Lawson and D. Leneman and M. Allen and M. Anderson and M. Arreola-Zamora and J. Artinger and J. Asher and D. Branchevsky and M. Cliffe and K. Colton and C. Costello and D. Depe and Domae, {B. W.} and S. Eldin and L. Fitzgibbon and A. Flemming and Frederick, {D. M.} and A. Gilbert and B. Hesford and R. Krieger and K. Lian and E. McKinney and Miller, {J. P.} and C. Pedersen and Z. Qu and R. Rozario and M. Rubly and R. Seaton and A. Subramanian and Sundin, {S. R.} and A. Tan and D. Thomlinson and W. Turner and G. Wing and C. Wong and A. Zarifian",
year = "2023",
month = jul,
day = "11",
doi = "10.1007/s11214-023-00984-w",
language = "English",
volume = "219",
pages = "37",
journal = "Space Science Reviews",
issn = "0038-6308",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN’s Low Altitude Perspective

AU - Angelopoulos, V.

AU - Zhang, X.-J.

AU - Artemyev, A. V.

AU - Mourenas, D.

AU - Tsai, E.

AU - Wilkins, C.

AU - Runov, A.

AU - Liu, J.

AU - Turner, D. L.

AU - Li, W.

AU - Khurana, K.

AU - Wirz, R. E.

AU - Sergeev, V. A.

AU - Meng, X.

AU - Wu, J.

AU - Hartinger, M. D.

AU - Raita, T.

AU - Shen, Y.

AU - An, X.

AU - Shi, X.

AU - Bashir, M. F.

AU - Shen, X.

AU - Gan, L.

AU - Qin, M.

AU - Capannolo, L.

AU - Ma, Q.

AU - Russell, C. L.

AU - Masongsong, E. V.

AU - Caron, R.

AU - He, I.

AU - Iglesias, L.

AU - Jha, S.

AU - King, J.

AU - Kumar, S.

AU - Le, K.

AU - Mao, J.

AU - McDermott, A.

AU - Nguyen, K.

AU - Norris, A.

AU - Palla, A.

AU - Roosnovo, A.

AU - Tam, J.

AU - Xie, E.

AU - Yap, R. C.

AU - Ye, S.

AU - Young, C.

AU - Adair, L. A.

AU - Shaffer, C.

AU - Chung, M.

AU - Cruce, P.

AU - Lawson, M.

AU - Leneman, D.

AU - Allen, M.

AU - Anderson, M.

AU - Arreola-Zamora, M.

AU - Artinger, J.

AU - Asher, J.

AU - Branchevsky, D.

AU - Cliffe, M.

AU - Colton, K.

AU - Costello, C.

AU - Depe, D.

AU - Domae, B. W.

AU - Eldin, S.

AU - Fitzgibbon, L.

AU - Flemming, A.

AU - Frederick, D. M.

AU - Gilbert, A.

AU - Hesford, B.

AU - Krieger, R.

AU - Lian, K.

AU - McKinney, E.

AU - Miller, J. P.

AU - Pedersen, C.

AU - Qu, Z.

AU - Rozario, R.

AU - Rubly, M.

AU - Seaton, R.

AU - Subramanian, A.

AU - Sundin, S. R.

AU - Tan, A.

AU - Thomlinson, D.

AU - Turner, W.

AU - Wing, G.

AU - Wong, C.

AU - Zarifian, A.

PY - 2023/7/11

Y1 - 2023/7/11

N2 - We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wavedriven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting lowaltitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energyspectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or L ∼ 0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in localtime, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at L ∼ 5 − 7 at dusk, while a smaller subset exists at L ∼ 8 − 12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of ∼ 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequencyEMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation

AB - We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wavedriven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting lowaltitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energyspectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or L ∼ 0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in localtime, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at L ∼ 5 − 7 at dusk, while a smaller subset exists at L ∼ 8 − 12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of ∼ 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequencyEMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation

KW - ENERGETIC ELECTRON-PRECIPITATION

KW - EMIC waves

KW - Electromagnetic ion cyclotron waves

KW - Relativistic electron precipitation

KW - Radiation belts

KW - Magnetosphere

KW - Whistler-mode chorus

KW - Plasma waves

UR - https://www.mendeley.com/catalogue/8e742234-16e5-390b-b6c4-5dceb29cdf5b/

U2 - 10.1007/s11214-023-00984-w

DO - 10.1007/s11214-023-00984-w

M3 - Review article

C2 - 37448777

VL - 219

SP - 37

JO - Space Science Reviews

JF - Space Science Reviews

SN - 0038-6308

IS - 5

ER -

ID: 114757573