The behavior of sulfonated PS containing 0.5, 1.35, 2.6, and 5.8 mol % of sodium sulfonate groups in chloroform solutions has been studied by static and dynamic light scattering, viscometry, and electric birefringence. The molecular mass of ionomers is measured, and their translational diffusion coefficient, intrinsic viscosity, and free relaxation times are estimated. It has been shown that association in solutions of ionomers containing more than 1.35 mol % of sodium sulfonate groups proceeds according to the open association model. Analysis of autocorrelation functions of scattered light intensity and electric birefringence decay makes it possible to determine translational diffusion coefficients and relaxation times for individual ionomer molecules, their pair associates, and higher multiplicity associates. With an increase in the fraction of sodium sulfonate groups, the hydrodynamic radius of individual ionomer molecules decreases from 8 to 5.8 nm, while the ratio between the hydrodynamic radius of pair associates and individual sulfonated PS molecules increases.

Original languageEnglish
Pages (from-to)269-276
Number of pages8
JournalPolymer Science - Series A
Volume51
Issue number3
DOIs
StatePublished - 1 Mar 2009

    Scopus subject areas

  • Polymers and Plastics
  • Materials Chemistry

ID: 33911053