The electronic energy structure of gold nanoclusters grown on oxidized single-crystal stepped surface Ni(755) is studied. It is shown that oxidation of the stepped Ni(755) surface results in the formation of a well-ordered continuous structure O(2 × 2) similar to that grown on a flat Ni(111) single-crystal surface. Evaporation of gold on such a surface leads to the formation of gold nanoclusters of a size determined by the size of the terraces on the Ni(755) surface. A comparison of the photoelectron spectra of the Au 4f 5/2, 7/2 core levels in clusters grown on clean and oxidized Ni(755) surfaces reveals that the spectra obtained for a gold cluster system on an oxidized Ni(755) surface contain not only the spectral components characteristic of metallic gold but also additional components of Au. It is assumed that additional components for gold clusters on the oxidized Ni(755) surface originate from partial oxidation of gold atoms with the participation of defects inherent in the stepped relief of the nickel substrate.

Original languageEnglish
Pages (from-to)984-990
Number of pages7
JournalPhysics of the Solid State
Volume49
Issue number5
DOIs
StatePublished - 1 May 2007

    Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

ID: 36201963