Research output: Contribution to journal › Article › peer-review
Electron spin noise under the conditions of nuclei-induced frequency focusing. / Jäschke, Natalie; Anders, Frithjof B.; Glazov, Mikhail M.
In: Physical Review B, Vol. 98, No. 4, 045307, 24.07.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Electron spin noise under the conditions of nuclei-induced frequency focusing
AU - Jäschke, Natalie
AU - Anders, Frithjof B.
AU - Glazov, Mikhail M.
PY - 2018/7/24
Y1 - 2018/7/24
N2 - We study theoretically the electron spin noise in quantum dots under nonequilibrium conditions caused by the pumping by a train of circularly polarized optical pulses. In such a situation, the nuclear spins are known to adjust in such a way that the electron spin precession frequencies become multiples of the pump pulse repetition frequency. This so-called phase synchronization effect was uncovered in A. Greilich et al. [Science 317, 1896 (2007)SCIEAS0036-807510.1126/science.1146850] and termed nuclei-induced frequency focusing of electron spin coherence. Using the classical approach to the central spin model, we evaluate the nuclear spin distribution function and the electron spin noise spectrum. We show that the electron spin noise spectrum consists of sharp peaks corresponding to the phase synchronization conditions and directly reveal the distribution of the nuclear spins. We discuss the effects of nuclear spin relaxation after the pumping is over and analyze the corresponding evolution of nuclear spin distributions and electron spin noise spectra.
AB - We study theoretically the electron spin noise in quantum dots under nonequilibrium conditions caused by the pumping by a train of circularly polarized optical pulses. In such a situation, the nuclear spins are known to adjust in such a way that the electron spin precession frequencies become multiples of the pump pulse repetition frequency. This so-called phase synchronization effect was uncovered in A. Greilich et al. [Science 317, 1896 (2007)SCIEAS0036-807510.1126/science.1146850] and termed nuclei-induced frequency focusing of electron spin coherence. Using the classical approach to the central spin model, we evaluate the nuclear spin distribution function and the electron spin noise spectrum. We show that the electron spin noise spectrum consists of sharp peaks corresponding to the phase synchronization conditions and directly reveal the distribution of the nuclear spins. We discuss the effects of nuclear spin relaxation after the pumping is over and analyze the corresponding evolution of nuclear spin distributions and electron spin noise spectra.
KW - QUANTUM DOTS
KW - DYNAMICS
KW - SPECTROSCOPY
KW - COMPUTATION
UR - http://www.scopus.com/inward/record.url?scp=85051413677&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/electron-spin-noise-under-conditions-nucleiinduced-frequency-focusing
U2 - 10.1103/PhysRevB.98.045307
DO - 10.1103/PhysRevB.98.045307
M3 - Article
AN - SCOPUS:85051413677
VL - 98
JO - Physical Review B-Condensed Matter
JF - Physical Review B-Condensed Matter
SN - 1098-0121
IS - 4
M1 - 045307
ER -
ID: 36285840