Research output: Contribution to journal › Article › peer-review
Electron and hole spin relaxation in InP-based self-assembled quantum dots emitting at telecom wavelengths. / Михайлов, Андрей Валерьевич; Григорьев, Филипп Сергеевич; Yakovlev, Dmitri R.; Belykh, Vasilii; Bayer, Manfred; Reithmaier, J.P.; Benyoucef, M.
In: Physical Review B, Vol. 98, No. 20, 205306, 26.11.2018, p. 205306.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Electron and hole spin relaxation in InP-based self-assembled quantum dots emitting at telecom wavelengths
AU - Михайлов, Андрей Валерьевич
AU - Григорьев, Филипп Сергеевич
AU - Yakovlev, Dmitri R.
AU - Belykh, Vasilii
AU - Bayer, Manfred
AU - Reithmaier, J.P.
AU - Benyoucef, M.
N1 - Funding Information: We are grateful to I. A. Yugova and N. E. Kopteva for useful discussions, to E. Kirstein for help with experiments, and to M. Yacob for help with the sample growth. Financial support from the Russian Foundation for Basic Research (RFBR, Project No. 15-52-12019) and Deutsche Forschungsgemeinschaft (DFG, Project A1) in the framework of International Collaborative Research Center TRR 160 is acknowledged. The Dortmund and Kassel teams acknowledge the support of the BMBF in the frame of the Project Q.com-H (Contracts No. 16KIS0104K and No. 16KIS0112). The Dortmund team also acknowledges support by the BMBF-project Q.Link.X (Contract No. 16KIS0857). M.B. thanks the Ministry of Education and Science of the Russian Federation (Contract No. 14.Z50.31.0021). A.V.M. acknowledges Saint-Petersburg State University for the research grant 11.34.2.2012. P.S.G. acknowledges support by the Russian Foundation for Basic Research (RFBR, Project No. 18-32-00568).
PY - 2018/11/26
Y1 - 2018/11/26
N2 - We investigate the electron and hole spin relaxation in an ensemble of self-assembled InAs/In0.53 Al0.24 Ga0.23 As/InP quantum dots with emission wavelengths around 1.5 μm by using pump-probe Faraday rotation spectroscopy. Electron-spin dephasing due to the randomly oriented nuclear Overhauser fields is observed. At low temperatures we find a submicrosecond longitudinal electron-spin relaxation time T1 which depends unexpectedly strongly on temperature. At high temperatures the electron-spin relaxation time is limited by optical phonon scattering through spin-orbit interaction decreasing down to 0.1 ns at 260 K. We show that the hole spin relaxation is activated much more effectively by a temperature increase compared with the electrons.
AB - We investigate the electron and hole spin relaxation in an ensemble of self-assembled InAs/In0.53 Al0.24 Ga0.23 As/InP quantum dots with emission wavelengths around 1.5 μm by using pump-probe Faraday rotation spectroscopy. Electron-spin dephasing due to the randomly oriented nuclear Overhauser fields is observed. At low temperatures we find a submicrosecond longitudinal electron-spin relaxation time T1 which depends unexpectedly strongly on temperature. At high temperatures the electron-spin relaxation time is limited by optical phonon scattering through spin-orbit interaction decreasing down to 0.1 ns at 260 K. We show that the hole spin relaxation is activated much more effectively by a temperature increase compared with the electrons.
KW - ROOM-TEMPERATURE
KW - INAS ISLANDS
KW - LASERS
KW - GENERATION
KW - OPERATION
UR - http://www.scopus.com/inward/record.url?scp=85057788876&partnerID=8YFLogxK
UR - http://arxiv.org/abs/1806.10515
UR - http://www.mendeley.com/research/electron-hole-spin-relaxation-inpbased-selfassembled-quantum-dots-emitting-telecom-wavelengths
U2 - 10.1103/PhysRevB.98.205306
DO - 10.1103/PhysRevB.98.205306
M3 - Article
VL - 98
SP - 205306
JO - Physical Review B-Condensed Matter
JF - Physical Review B-Condensed Matter
SN - 1098-0121
IS - 20
M1 - 205306
ER -
ID: 36009460