We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called "plasma trace" is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and