Research output: Contribution to journal › Article › peer-review
Eigenvalues of Schrödinger operators on finite and infinite intervals. / Korotyaev, Evgeny L.
In: Mathematische Nachrichten, Vol. 294, No. 11, 11.2021, p. 2188-2199.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Eigenvalues of Schrödinger operators on finite and infinite intervals
AU - Korotyaev, Evgeny L.
N1 - Publisher Copyright: © 2021 Wiley-VCH GmbH
PY - 2021/11
Y1 - 2021/11
N2 - We consider a Sturm–Liouville operator with an integrable potential q on the unit interval (Formula presented.). We consider a Schrödinger operator with a real compactly supported potential on the half line and on the line, where this potential coincides with q on the unit interval and vanishes outside I. We determine the relationships between eigenvalues of such operators and obtain estimates of eigenvalues in terms of potentials.
AB - We consider a Sturm–Liouville operator with an integrable potential q on the unit interval (Formula presented.). We consider a Schrödinger operator with a real compactly supported potential on the half line and on the line, where this potential coincides with q on the unit interval and vanishes outside I. We determine the relationships between eigenvalues of such operators and obtain estimates of eigenvalues in terms of potentials.
UR - http://www.scopus.com/inward/record.url?scp=85121359617&partnerID=8YFLogxK
U2 - 10.1002/mana.201900511
DO - 10.1002/mana.201900511
M3 - Article
AN - SCOPUS:85121359617
VL - 294
SP - 2188
EP - 2199
JO - Mathematische Nachrichten
JF - Mathematische Nachrichten
SN - 0025-584X
IS - 11
ER -
ID: 91318545