We study the generation of single-photon pulses with the tailored temporal shape via nonlocal spectral filtering. A shaped photon is heralded from a time-energy entangled photon pair upon spectral filtering and time-resolved detection of its entangled counterpart. We show that the temporal shape of the heralded photon is defined by the time-inverted impulse response of the spectral filter and does not depend on the heralding instant. Thus one can avoid postselection of particular heralding instants and achieve a substantially higher heralding rate of shaped photons as compared to the generation of photons via nonlocal temporal modulation. Furthermore, the method can be used to generate shaped photons with a coherence time in the ns-μs range and is particularly suitable to produce photons with the exponentially rising temporal shape required for efficient interfacing to a single quantum emitter in free space.

Original languageEnglish
Article number013808
JournalPhysical Review A
Volume101
Issue number1
DOIs
StatePublished - 10 Jan 2020

    Scopus subject areas

  • Atomic and Molecular Physics, and Optics

ID: 97771018