• Murilo S. de Abreu
  • Ana C.V.V. Giacomini
  • Bruna E. dos Santos
  • Rafael Genario
  • Natalia I. Marchiori
  • Larissa G.da Rosa
  • Allan V. Kalueff

Lidocaine is a voltage-gated Na+ channel blocker, commonly used as a fast-acting local and general anesthetic. Lidocaine also has central action, affecting behavior both clinically and in animal models. Adult zebrafish are rapidly becoming a critical novel model organism in translational neuroscience research. Here, we examine the effects of acute peripheral (lateral line application, 4%) and systemic (water immersion, 1, 5 and 10 mg/L) administration of lidocaine on adult zebrafish behavior tested in the novel tank test. Overall, the drug evoked hypolocomotor effect when applied systemically (at 10 mg/L) and peripherally. Peripheral lidocaine also reduced top exploration in the novel tank test (vs. sham), suggesting anxiogenic-like effect of the lateral line blockage, Our findings show the importance of the lateral line system in driving adult zebrafish locomotion, and suggest sedative-like effects of systemic lidocaine in aduld zebrafish. In addition, reflecting the role of central cholinergic contribution in lidocaine action, brain acetylcholinesterase (AChE) activity was lower following peripheral and systemic administration of lidocaine at behaviorally active doses. Collectively, our data support the effects of lidocaine on behavioral responses in zebrafish, and reinforce the growing utility of this aquatic model to screen various CNS drugs.

Original languageEnglish
Pages (from-to)181-186
Number of pages6
JournalNeuroscience Letters
Volume692
DOIs
StatePublished - 23 Jan 2019

    Research areas

  • Anxiety, Emotional behavior, Lidocaine, Sedation, Zebrafish, Exploratory Behavior/drug effects, Lidocaine/administration & dosage, Acetylcholinesterase/metabolism, Male, Anxiety/chemically induced, Brain/drug effects, Animals, Behavior, Animal/drug effects, Female, Models, Animal, Swimming

    Scopus subject areas

  • Neuroscience(all)

ID: 47610873