DOI

The role of cascades in natural communities has been extensively studied, but interactions between trophic and facilitation cascades are unexplored. In the White Sea (65°N) shallow subtidal, bivalve primary facilitators provide hard substrate for secondary facilitator barnacles, that, in turn, provide substrate for conspecifics, ascidians, red algae and multiple associated organisms, composing a multi-level facilitation cascade. Previous research revealed that predation by the whelk Boreotrophon clathratus accounts for ~7% of adult barnacle mortality. Low whelk abundance limits their effect, with barnacles living on conspecifics several times more vulnerable to predation than those living on primary substrate. Trophic cascades can selectively shield foundation species from consumers, and hence may affect the structure and length of facilitation cascades. We tested the hypothesis that low abundance of the whelks results from mesopredator predation on their juveniles. Depending on the magnitude of the effect, this would mean that a trophic cascade controls the abundance of barnacles on all substrates or only barnacles living on conspecifics. We also suggested that barnacles on primary substrates and conspecifics facilitate different dependent assemblages. We manipulated the presence of crab and shrimp mesopredators in field caging experiments to assess their effect on whelk recruitment. In a field survey, we compared the assemblages of sessile macrobenthic organisms associated with barnacles living on different substrates. Caging experiments evidenced that crab and shrimp mesopredators reduce whelk recruitment by 4.6 times. Field data showed that barnacles on primary substrate and on conspecifics promote different dependent assemblages including secondary facilitator ascidians. Although mesopredators do not shield barnacles from elimination, their absence would restrict them from living on conspecifics. Barnacles on conspecifics are functionally different from barnacles on primary substrate, and can be considered a separate level of the facilitation cascade. Trophic cascades thus can generate community-wide effects on facilitation cascades by affecting their structure and possibly length.

Original languageEnglish
Pages (from-to)2462-2470
Number of pages9
JournalJournal of Animal Ecology
Volume90
Issue number10
DOIs
StatePublished - Oct 2021

    Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Animal Science and Zoology

    Research areas

  • crabs, facilitation cascade, foundation species, gastropod, predation, shrimp, top-down control, trophic cascade, Predatory Behavior, Brachyura, Gastropoda, Food Chain, Animals, Bivalvia, Thoracica, BARNACLES, PREDATION, PATTERNS, ORGANIZATION, COMMUNITY, FOOD WEBS, ASCIDIANS

ID: 89156674