DOI

The electron work function (EWF) of ultrafine grained (UFG) aluminum structured by high pressure torsion (HPT) has been investigated. For the first time, the dependence of the EWF on the specific length of grain boundaries (or the grain size) for UFG Al has been obtained. The change of average grain size was achieved by short term annealing of HPT-processed aluminum at different temperatures from the range 90–400 °C. It has been shown that the state of grain boundaries (GBs) affects the magnitude of the EWF. It has been found that the transformation of GBs due to annealing at 90 °C from a nonequilibrium to more equilibrium state while maintaining the specific length of GBs and their average misorientation is accompanied by a decrease in average GB specific energy by 0.3 J m -2 . This transition provides a sharp increase in the EWF of the UFG Al by 0.25 eV.

Original languageEnglish
Pages (from-to)110-115
Number of pages6
JournalReviews on Advanced Materials Science
Volume57
Issue number1
DOIs
StatePublished - 1 Dec 2018

    Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics

ID: 38314601