Standard

Edge waves propagating along an angular junction of two semi-infinite membranes bounding an acoustic medium. / Лялинов, Михаил Анатольевич; Полянская, Светлана Владимировна.

2023. 128-132 Abstract from Days on Diffraction 2023, Санкт-Петербург, Russian Federation.

Research output: Contribution to conferenceAbstractpeer-review

Harvard

Лялинов, МА & Полянская, СВ 2023, 'Edge waves propagating along an angular junction of two semi-infinite membranes bounding an acoustic medium', Days on Diffraction 2023, Санкт-Петербург, Russian Federation, 5/06/23 - 9/06/23 pp. 128-132. https://doi.org/10.1109/dd58728.2023.10325775

APA

Лялинов, М. А., & Полянская, С. В. (2023). Edge waves propagating along an angular junction of two semi-infinite membranes bounding an acoustic medium. 128-132. Abstract from Days on Diffraction 2023, Санкт-Петербург, Russian Federation. https://doi.org/10.1109/dd58728.2023.10325775

Vancouver

Лялинов МА, Полянская СВ. Edge waves propagating along an angular junction of two semi-infinite membranes bounding an acoustic medium. 2023. Abstract from Days on Diffraction 2023, Санкт-Петербург, Russian Federation. https://doi.org/10.1109/dd58728.2023.10325775

Author

Лялинов, Михаил Анатольевич ; Полянская, Светлана Владимировна. / Edge waves propagating along an angular junction of two semi-infinite membranes bounding an acoustic medium. Abstract from Days on Diffraction 2023, Санкт-Петербург, Russian Federation.5 p.

BibTeX

@conference{30cb008624cd4573b7bc7372e553cd3b,
title = "Edge waves propagating along an angular junction of two semi-infinite membranes bounding an acoustic medium",
abstract = "We consider existence of localized waves capable ofpropagating along the edge of two contacting membranesbounding a medium. The proof of the existenceis reduced to study of the discrete spectrum ofthe corresponding operator attributed to the problem",
author = "Лялинов, {Михаил Анатольевич} and Полянская, {Светлана Владимировна}",
year = "2023",
month = jun,
day = "5",
doi = "10.1109/dd58728.2023.10325775",
language = "English",
pages = "128--132",
note = "null ; Conference date: 05-06-2023 Through 09-06-2023",
url = "https://pdmi.ras.ru/~dd/",

}

RIS

TY - CONF

T1 - Edge waves propagating along an angular junction of two semi-infinite membranes bounding an acoustic medium

AU - Лялинов, Михаил Анатольевич

AU - Полянская, Светлана Владимировна

PY - 2023/6/5

Y1 - 2023/6/5

N2 - We consider existence of localized waves capable ofpropagating along the edge of two contacting membranesbounding a medium. The proof of the existenceis reduced to study of the discrete spectrum ofthe corresponding operator attributed to the problem

AB - We consider existence of localized waves capable ofpropagating along the edge of two contacting membranesbounding a medium. The proof of the existenceis reduced to study of the discrete spectrum ofthe corresponding operator attributed to the problem

UR - https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch= true&queryText=2023%20Days%20%20on%20Diffraction

UR - https://www.mendeley.com/catalogue/70173720-92dd-391a-8f27-75755f38db39/

U2 - 10.1109/dd58728.2023.10325775

DO - 10.1109/dd58728.2023.10325775

M3 - Abstract

SP - 128

EP - 132

Y2 - 5 June 2023 through 9 June 2023

ER -

ID: 114434506