The dynamic surface properties of aqueous dispersions of α-lactalbumin (ALA) amyloid fibrils differ noticeably from the properties of the fibril dispersions of other globular proteins. As a result, the protocol of the application of ALA fibrils to form stable foams and emulsions has to be deviate from that of other protein fibrils. Unlike the fibrils of β-lactoglobulin and lysozyme, ALA fibrils can be easily purified from hydrolyzed peptides and native protein molecules. The application of the oscillating barrier method shows that the dynamic surface elasticity of ALA fibril dispersions exceeds the surface elasticity of native protein solutions at pH 2. ALA fibrils proved to be stable at this pH, but the stability breaks at higher pH levels when the fibrils start to release small peptides of high surface activity. As a result, the dynamic surface properties of ALA coincide with those of native protein solutions. The ionic strength strongly influences the adsorption kinetics of both fibril dispersions and native protein solutions but have almost no impact on the structure of the adsorption layers.

Original languageEnglish
Article number3970
Number of pages11
Issue number19
StatePublished - 2 Oct 2023

    Research areas

  • amyloid fibrils, molten globules, stability of fibril dispersions, surface dilational elasticity, surface pressure, α-lactalbumin

ID: 111337348