Standard

DYNAMIC APPROACH TO CLASSICAL MOMENT PROBLEM. / Mikhaylov, A.S.; Mikahaylov, V.S.

Марчуковские научные чтения - 2019: Труды Международной конференции "Актуальные проблемы вычислительной и прикладной математики". Новосибирск : Издательство Новосибирского университета, 2019. p. 339-345.

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Harvard

Mikhaylov, AS & Mikahaylov, VS 2019, DYNAMIC APPROACH TO CLASSICAL MOMENT PROBLEM. in Марчуковские научные чтения - 2019: Труды Международной конференции "Актуальные проблемы вычислительной и прикладной математики". Издательство Новосибирского университета, Новосибирск, pp. 339-345, Международная конференция "Актуальные проблемы вычислительной и прикладной математики 2019", Новосибирск, Russian Federation, 1/07/19. https://doi.org/10.24411/9999-016A-2019-10054

APA

Mikhaylov, A. S., & Mikahaylov, V. S. (2019). DYNAMIC APPROACH TO CLASSICAL MOMENT PROBLEM. In Марчуковские научные чтения - 2019: Труды Международной конференции "Актуальные проблемы вычислительной и прикладной математики" (pp. 339-345). Издательство Новосибирского университета. https://doi.org/10.24411/9999-016A-2019-10054

Vancouver

Mikhaylov AS, Mikahaylov VS. DYNAMIC APPROACH TO CLASSICAL MOMENT PROBLEM. In Марчуковские научные чтения - 2019: Труды Международной конференции "Актуальные проблемы вычислительной и прикладной математики". Новосибирск: Издательство Новосибирского университета. 2019. p. 339-345 https://doi.org/10.24411/9999-016A-2019-10054

Author

Mikhaylov, A.S. ; Mikahaylov, V.S. / DYNAMIC APPROACH TO CLASSICAL MOMENT PROBLEM. Марчуковские научные чтения - 2019: Труды Международной конференции "Актуальные проблемы вычислительной и прикладной математики". Новосибирск : Издательство Новосибирского университета, 2019. pp. 339-345

BibTeX

@inproceedings{4a04bcb0cd86417d86868ac7128c1532,
title = "DYNAMIC APPROACH TO CLASSICAL MOMENT PROBLEM",
abstract = "We consider the problem of the construction of a measure supported on a real line from prescribed moments. The main idea is to use the auxiliary dynamical system with the discrete time associated with a semi-infinite Jacobi matrix. Then the inverse dynamic data for this system, so called response operator (discrete analog of a dynamic Dirichet-to-Neumann map) is given in terms of moments, and we can use ideas of the Boundary Control method to recover the spectral data, i.e. the measure of a truncated moments problem, from dynamic one. The remarkable fact is that in our procedure we do not use the Jacobi matrix itself. We also formulate the results on the uniqueness of the solution of Hamburger and Stieltjes moments problems.",
keywords = "moment problem, boundary control method, Jacobi Matrices",
author = "A.S. Mikhaylov and V.S. Mikahaylov",
year = "2019",
month = dec,
day = "16",
doi = "10.24411/9999-016A-2019-10054",
language = "English",
isbn = "9785901548424",
pages = "339--345",
booktitle = "Марчуковские научные чтения - 2019",
publisher = "Издательство Новосибирского университета",
address = "Russian Federation",
note = "Международная конференция {"}Актуальные проблемы вычислительной и прикладной математики 2019{"}, АПВПМ - 19 ; Conference date: 01-07-2019 Through 05-07-2019",

}

RIS

TY - GEN

T1 - DYNAMIC APPROACH TO CLASSICAL MOMENT PROBLEM

AU - Mikhaylov, A.S.

AU - Mikahaylov, V.S.

PY - 2019/12/16

Y1 - 2019/12/16

N2 - We consider the problem of the construction of a measure supported on a real line from prescribed moments. The main idea is to use the auxiliary dynamical system with the discrete time associated with a semi-infinite Jacobi matrix. Then the inverse dynamic data for this system, so called response operator (discrete analog of a dynamic Dirichet-to-Neumann map) is given in terms of moments, and we can use ideas of the Boundary Control method to recover the spectral data, i.e. the measure of a truncated moments problem, from dynamic one. The remarkable fact is that in our procedure we do not use the Jacobi matrix itself. We also formulate the results on the uniqueness of the solution of Hamburger and Stieltjes moments problems.

AB - We consider the problem of the construction of a measure supported on a real line from prescribed moments. The main idea is to use the auxiliary dynamical system with the discrete time associated with a semi-infinite Jacobi matrix. Then the inverse dynamic data for this system, so called response operator (discrete analog of a dynamic Dirichet-to-Neumann map) is given in terms of moments, and we can use ideas of the Boundary Control method to recover the spectral data, i.e. the measure of a truncated moments problem, from dynamic one. The remarkable fact is that in our procedure we do not use the Jacobi matrix itself. We also formulate the results on the uniqueness of the solution of Hamburger and Stieltjes moments problems.

KW - moment problem

KW - boundary control method

KW - Jacobi Matrices

UR - http://conf.nsc.ru/files/conferences/amca2019/554130/%D0%90%D0%9F%D0%92%D0%9F%D0%9C-2019.pdf

U2 - 10.24411/9999-016A-2019-10054

DO - 10.24411/9999-016A-2019-10054

M3 - Conference contribution

SN - 9785901548424

SP - 339

EP - 345

BT - Марчуковские научные чтения - 2019

PB - Издательство Новосибирского университета

CY - Новосибирск

T2 - Международная конференция "Актуальные проблемы вычислительной и прикладной математики 2019"

Y2 - 1 July 2019 through 5 July 2019

ER -

ID: 49668124