DOI

An expansion in the CAG repeat of the IT15 (huntingtin) gene underlies the development of Huntington's disease (HD), but the basis for the specific vulnerability of dopamine-receptive striatal neurons remains unclear. To examine the potential role of the dopamine system in the emergence of pathological conditions in HD, we generated a double mutant mouse strain with both enhanced dopamine transmission and endogenous expression of a mutant huntingtin gene. This strain was generated by crossing the dopamine transporter knock-out mouse, which exhibits a 5-fold elevation in extracellular dopamine levels in the striatum and locomotor hyperactivity, to a knock-in mouse model of HD containing 92 CAG repeats. These double mutant mice exhibited an increased stereotypic activity at 6 months of age, followed by a progressive decline of their locomotor hyperactivity. Expression of the mutated huntingtin did not alter dopamine or its metabolite levels in normal or dopamine transporter knock-out mice. However, the mutant huntingtin protein aggregated much earlier and to a greater extent in the striatum and other dopaminergic brain regions in the hyperdopaminergic mouse model of HD. Furthermore, the formation of neuropil aggregates in the striatum and other regions of hyperdopaminergic HD mice was observed at 4 months of age, well before similar events occurred in normal HD mice (12 months). These findings indicate that dopamine contributes to the deleterious effects of mutated huntingtin on striatal function, and this is accompanied by enhanced formation of huntingtin aggregates.

Original languageEnglish
JournalFASEB Journal
Volume20
Issue number14
DOIs
StatePublished - 1 Dec 2006
Externally publishedYes

    Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Cell Biology

    Research areas

  • Basal ganglia, Chorea, Huntington's disease, Hyperkinetic disorders, Medium spiny neurons, Polyglutamine disease

ID: 36474135