Documents

DOI

We compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter >1 RE) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than nonaxisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global nonaxisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the nonaxisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreasesof the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for Bz = 0. Therefore, we assumethat these predictions indicate the actual magnetopause position, but future investigations are still needed.
Original languageEnglish
Pages (from-to)6493–6508
Number of pages16
JournalJOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
Volume121
DOIs
StatePublished - 2016

    Scopus subject areas

  • Physics and Astronomy(all)

ID: 7596145