Standard

DNA interaction with head-to-tail associates of cationic surfactants prevents formation of compact particles. / Kasyanenko, Nina; Unksov, Ivan; Bakulev, Vladimir; Santer, Svetlana.

In: Molecules, Vol. 23, No. 7, 1576, 28.06.2018.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{5285382300514280a20dcfb8fb08b7a8,
title = "DNA interaction with head-to-tail associates of cationic surfactants prevents formation of compact particles",
abstract = "Cationic azobenzene-containing surfactants are capable of condensing DNA in solution with formation of nanosized particles that can be employed in gene delivery. The ratio of surfactant/DNA concentration and solution ionic strength determines the result of DNA-surfactant interaction: Complexes with a micelle-like surfactant associates on DNA, which induces DNA shrinkage, DNA precipitation or DNA condensation with the emergence of nanosized particles. UV and fluorescence spectroscopy, low gradient viscometry and flow birefringence methods were employed to investigate DNA-surfactant and surfactant-surfactant interaction at different NaCl concentrations, [NaCl]. It was observed that [NaCl] (or the Debye screening radius) determines the surfactant-surfactant interaction in solutions without DNA. Monomers, micelles and non-micellar associates of azobenzene-containing surfactants with head-to-tail orientation of molecules were distinguished due to the features of their absorption spectra. The novel data enabled us to conclude that exactly the type of associates (together with the concentration of components) determines the result of DNA-surfactant interaction. Predomination of head-to-tail associates at 0.01 M < [NaCl] < 0.5 M induces DNA aggregation and in some cases DNA precipitation. High NaCl concentration (higher than 0.8 M) prevents electrostatic attraction of surfactants to DNA phosphates for complex formation. DAPI dye luminescence in solutions with DNA-surfactant complexes shows that surfactant tails overlap the DNA minor groove. The addition of di- and trivalent metal ions before and after the surfactant binding to DNA indicate that the bound surfactant molecules are located on DNA in islets.",
keywords = "Azobenzene trimethylammonium bromide, DNA, Head-to-tail surfactant associates, Ionic strength, Multivalent ions",
author = "Nina Kasyanenko and Ivan Unksov and Vladimir Bakulev and Svetlana Santer",
year = "2018",
month = jun,
day = "28",
doi = "10.3390/molecules23071576",
language = "English",
volume = "23",
journal = "Molecules",
issn = "1420-3049",
publisher = "MDPI AG",
number = "7",

}

RIS

TY - JOUR

T1 - DNA interaction with head-to-tail associates of cationic surfactants prevents formation of compact particles

AU - Kasyanenko, Nina

AU - Unksov, Ivan

AU - Bakulev, Vladimir

AU - Santer, Svetlana

PY - 2018/6/28

Y1 - 2018/6/28

N2 - Cationic azobenzene-containing surfactants are capable of condensing DNA in solution with formation of nanosized particles that can be employed in gene delivery. The ratio of surfactant/DNA concentration and solution ionic strength determines the result of DNA-surfactant interaction: Complexes with a micelle-like surfactant associates on DNA, which induces DNA shrinkage, DNA precipitation or DNA condensation with the emergence of nanosized particles. UV and fluorescence spectroscopy, low gradient viscometry and flow birefringence methods were employed to investigate DNA-surfactant and surfactant-surfactant interaction at different NaCl concentrations, [NaCl]. It was observed that [NaCl] (or the Debye screening radius) determines the surfactant-surfactant interaction in solutions without DNA. Monomers, micelles and non-micellar associates of azobenzene-containing surfactants with head-to-tail orientation of molecules were distinguished due to the features of their absorption spectra. The novel data enabled us to conclude that exactly the type of associates (together with the concentration of components) determines the result of DNA-surfactant interaction. Predomination of head-to-tail associates at 0.01 M < [NaCl] < 0.5 M induces DNA aggregation and in some cases DNA precipitation. High NaCl concentration (higher than 0.8 M) prevents electrostatic attraction of surfactants to DNA phosphates for complex formation. DAPI dye luminescence in solutions with DNA-surfactant complexes shows that surfactant tails overlap the DNA minor groove. The addition of di- and trivalent metal ions before and after the surfactant binding to DNA indicate that the bound surfactant molecules are located on DNA in islets.

AB - Cationic azobenzene-containing surfactants are capable of condensing DNA in solution with formation of nanosized particles that can be employed in gene delivery. The ratio of surfactant/DNA concentration and solution ionic strength determines the result of DNA-surfactant interaction: Complexes with a micelle-like surfactant associates on DNA, which induces DNA shrinkage, DNA precipitation or DNA condensation with the emergence of nanosized particles. UV and fluorescence spectroscopy, low gradient viscometry and flow birefringence methods were employed to investigate DNA-surfactant and surfactant-surfactant interaction at different NaCl concentrations, [NaCl]. It was observed that [NaCl] (or the Debye screening radius) determines the surfactant-surfactant interaction in solutions without DNA. Monomers, micelles and non-micellar associates of azobenzene-containing surfactants with head-to-tail orientation of molecules were distinguished due to the features of their absorption spectra. The novel data enabled us to conclude that exactly the type of associates (together with the concentration of components) determines the result of DNA-surfactant interaction. Predomination of head-to-tail associates at 0.01 M < [NaCl] < 0.5 M induces DNA aggregation and in some cases DNA precipitation. High NaCl concentration (higher than 0.8 M) prevents electrostatic attraction of surfactants to DNA phosphates for complex formation. DAPI dye luminescence in solutions with DNA-surfactant complexes shows that surfactant tails overlap the DNA minor groove. The addition of di- and trivalent metal ions before and after the surfactant binding to DNA indicate that the bound surfactant molecules are located on DNA in islets.

KW - Azobenzene trimethylammonium bromide

KW - DNA

KW - Head-to-tail surfactant associates

KW - Ionic strength

KW - Multivalent ions

UR - http://www.scopus.com/inward/record.url?scp=85049488764&partnerID=8YFLogxK

U2 - 10.3390/molecules23071576

DO - 10.3390/molecules23071576

M3 - Article

C2 - 29958479

AN - SCOPUS:85049488764

VL - 23

JO - Molecules

JF - Molecules

SN - 1420-3049

IS - 7

M1 - 1576

ER -

ID: 39156830