Standard

Distorted Hankel integral operators. / Peller, V. V.; Александров, Алексей Борисович.

In: Indiana University Mathematics Journal, Vol. 53, No. 4, 2004, p. 925-940.

Research output: Contribution to journalArticlepeer-review

Harvard

Peller, VV & Александров, АБ 2004, 'Distorted Hankel integral operators', Indiana University Mathematics Journal, vol. 53, no. 4, pp. 925-940. https://doi.org/10.1512/iumj.2004.53.2525

APA

Vancouver

Author

Peller, V. V. ; Александров, Алексей Борисович. / Distorted Hankel integral operators. In: Indiana University Mathematics Journal. 2004 ; Vol. 53, No. 4. pp. 925-940.

BibTeX

@article{75427c66b08f43d2b6505c8bc8b014e9,
title = "Distorted Hankel integral operators",
abstract = "For α, β > 0 and for a locally integrable function (or, more generally, a distribution) ψ on (0, ∞), we study the integral operators script G signψα,β on L 2 (ℝ+) defined by (script G signψ α,β f)(x) = ∫ℝ+ ψ(x α + yβ)f(y) dy. We describe the bounded and compact operators script G signψα,β and the operators script G signψα,β of Schatten-von Neumann class Sp. The main results of the paper are given in Section 5, where we study continuity properties of the averaging projection script Q signα,β onto the operators of the form script G signψα,β. In particular, we show that if α ≤ β and β > 1, then script G sign ψα,β is bounded on Sp if and only if 2β(β + 1)-1 < p < 2β(β - 1) -1.",
keywords = "Averaging projection, Besov spaces, Hankel operator, Schatten classes",
author = "Peller, {V. V.} and Александров, {Алексей Борисович}",
year = "2004",
doi = "10.1512/iumj.2004.53.2525",
language = "English",
volume = "53",
pages = "925--940",
journal = "Indiana University Mathematics Journal",
issn = "0022-2518",
publisher = "Indiana University",
number = "4",

}

RIS

TY - JOUR

T1 - Distorted Hankel integral operators

AU - Peller, V. V.

AU - Александров, Алексей Борисович

PY - 2004

Y1 - 2004

N2 - For α, β > 0 and for a locally integrable function (or, more generally, a distribution) ψ on (0, ∞), we study the integral operators script G signψα,β on L 2 (ℝ+) defined by (script G signψ α,β f)(x) = ∫ℝ+ ψ(x α + yβ)f(y) dy. We describe the bounded and compact operators script G signψα,β and the operators script G signψα,β of Schatten-von Neumann class Sp. The main results of the paper are given in Section 5, where we study continuity properties of the averaging projection script Q signα,β onto the operators of the form script G signψα,β. In particular, we show that if α ≤ β and β > 1, then script G sign ψα,β is bounded on Sp if and only if 2β(β + 1)-1 < p < 2β(β - 1) -1.

AB - For α, β > 0 and for a locally integrable function (or, more generally, a distribution) ψ on (0, ∞), we study the integral operators script G signψα,β on L 2 (ℝ+) defined by (script G signψ α,β f)(x) = ∫ℝ+ ψ(x α + yβ)f(y) dy. We describe the bounded and compact operators script G signψα,β and the operators script G signψα,β of Schatten-von Neumann class Sp. The main results of the paper are given in Section 5, where we study continuity properties of the averaging projection script Q signα,β onto the operators of the form script G signψα,β. In particular, we show that if α ≤ β and β > 1, then script G sign ψα,β is bounded on Sp if and only if 2β(β + 1)-1 < p < 2β(β - 1) -1.

KW - Averaging projection

KW - Besov spaces

KW - Hankel operator

KW - Schatten classes

UR - http://www.scopus.com/inward/record.url?scp=8844226700&partnerID=8YFLogxK

U2 - 10.1512/iumj.2004.53.2525

DO - 10.1512/iumj.2004.53.2525

M3 - Article

VL - 53

SP - 925

EP - 940

JO - Indiana University Mathematics Journal

JF - Indiana University Mathematics Journal

SN - 0022-2518

IS - 4

ER -

ID: 5204514