Distorted Hankel integral operators. / Peller, V. V.; Александров, Алексей Борисович.
In: Indiana University Mathematics Journal, Vol. 53, No. 4, 2004, p. 925-940.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Distorted Hankel integral operators
AU - Peller, V. V.
AU - Александров, Алексей Борисович
PY - 2004
Y1 - 2004
N2 - For α, β > 0 and for a locally integrable function (or, more generally, a distribution) ψ on (0, ∞), we study the integral operators script G signψα,β on L 2 (ℝ+) defined by (script G signψ α,β f)(x) = ∫ℝ+ ψ(x α + yβ)f(y) dy. We describe the bounded and compact operators script G signψα,β and the operators script G signψα,β of Schatten-von Neumann class Sp. The main results of the paper are given in Section 5, where we study continuity properties of the averaging projection script Q signα,β onto the operators of the form script G signψα,β. In particular, we show that if α ≤ β and β > 1, then script G sign ψα,β is bounded on Sp if and only if 2β(β + 1)-1 < p < 2β(β - 1) -1.
AB - For α, β > 0 and for a locally integrable function (or, more generally, a distribution) ψ on (0, ∞), we study the integral operators script G signψα,β on L 2 (ℝ+) defined by (script G signψ α,β f)(x) = ∫ℝ+ ψ(x α + yβ)f(y) dy. We describe the bounded and compact operators script G signψα,β and the operators script G signψα,β of Schatten-von Neumann class Sp. The main results of the paper are given in Section 5, where we study continuity properties of the averaging projection script Q signα,β onto the operators of the form script G signψα,β. In particular, we show that if α ≤ β and β > 1, then script G sign ψα,β is bounded on Sp if and only if 2β(β + 1)-1 < p < 2β(β - 1) -1.
KW - Averaging projection
KW - Besov spaces
KW - Hankel operator
KW - Schatten classes
UR - http://www.scopus.com/inward/record.url?scp=8844226700&partnerID=8YFLogxK
U2 - 10.1512/iumj.2004.53.2525
DO - 10.1512/iumj.2004.53.2525
M3 - Article
VL - 53
SP - 925
EP - 940
JO - Indiana University Mathematics Journal
JF - Indiana University Mathematics Journal
SN - 0022-2518
IS - 4
ER -
ID: 5204514