Standard

Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circle. / Zhukova, A. M.; Panina, G. Yu.

In: Sbornik Mathematics, Vol. 208, No. 9, 01.01.2017, p. 1353-1367.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{da1123f30bd04a6ea080f3c7ffceb211,
title = "Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circle",
abstract = "We construct an exact discrete Morse function on the moduli space of a planar polygonal linkage. A cellular structure on the moduli space is used, and the number of cells is minimised by employing discrete Morse theory. Bibliography: 12 entries.",
keywords = "cell complex, configuration space, discrete vector field, exact Morse function, polygonal linkage",
author = "Zhukova, {A. M.} and Panina, {G. Yu}",
year = "2017",
month = jan,
day = "1",
doi = "10.1070/SM8677",
language = "English",
volume = "208",
pages = "1353--1367",
journal = "Sbornik Mathematics",
issn = "1064-5616",
publisher = "Turpion Ltd.",
number = "9",

}

RIS

TY - JOUR

T1 - Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circle

AU - Zhukova, A. M.

AU - Panina, G. Yu

PY - 2017/1/1

Y1 - 2017/1/1

N2 - We construct an exact discrete Morse function on the moduli space of a planar polygonal linkage. A cellular structure on the moduli space is used, and the number of cells is minimised by employing discrete Morse theory. Bibliography: 12 entries.

AB - We construct an exact discrete Morse function on the moduli space of a planar polygonal linkage. A cellular structure on the moduli space is used, and the number of cells is minimised by employing discrete Morse theory. Bibliography: 12 entries.

KW - cell complex

KW - configuration space

KW - discrete vector field

KW - exact Morse function

KW - polygonal linkage

UR - http://www.scopus.com/inward/record.url?scp=85039161724&partnerID=8YFLogxK

U2 - 10.1070/SM8677

DO - 10.1070/SM8677

M3 - Article

AN - SCOPUS:85039161724

VL - 208

SP - 1353

EP - 1367

JO - Sbornik Mathematics

JF - Sbornik Mathematics

SN - 1064-5616

IS - 9

ER -

ID: 49857002