Research output: Contribution to journal › Article › peer-review
Dirac Operators with Exponentially Decaying Entropy. / Gubkin, P.
In: Constructive Approximation, 21.02.2024.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Dirac Operators with Exponentially Decaying Entropy
AU - Gubkin, P.
N1 - Export Date: 4 March 2024 Адрес для корреспонденции: Gubkin, P.; St. Petersburg State University, Universitetskaya Nab. 7-9, Russian Federation; эл. почта: gubkin.pv@yandex.ru Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka, 075-15-2022-287 Текст о финансировании 1: The work is supported by Ministry of Science and Higher Education of the Russian Federation, agreement 075-15-2022-287 Пристатейные ссылки: Bessonov, R., Szegő condition and scattering for one-dimensional Dirac operators (2020) Constr. Approx, 51 (2), pp. 273-302. , 4076111; Bessonov, R., Denisov, S., De Branges canonical systems with finite logarithmic integral (2021) Anal. PDE, 14 (5), pp. 1509-1556. , 4307215; Bessonov, R., Denisov, S., Zero sets, entropy, and pointwise asymptotics of orthogonal polynomials (2021) J. Funct. Anal., 280 (12), p. 38. , 109002; Bessonov, R., Denisov, S., (2022) Sobolev Norms of L 2 -Solutions to NLS. Arxiv, 2211, p. 07051; Bessonov, R., Denisov, S., Szegő condition, scattering, and vibration of Krein strings (2023) Invent. Math, 234 (1), pp. 291-373. , 2023InMat.234.291B, 4635834; Damanik, D., Simon, B., Jost functions and Jost solutions for Jacobi matrices. II. Decay and analyticity (2006) Int. Math. Res. Not., Pages Art. ID, 19396, p. 32; Denisov, S., Continuous analogs of polynomials orthogonal on the unit circle and Kreĭn systems. IMRS (2006) Int. Math. Res. Surv., Pages Art. ID, 54517, p. 148; Dyatlov, S., Zworski, M., (2019) Mathematical Theory of Scattering Resonances. Graduate Studies in Mathematics, , Providence, RI, American Mathematical Society; Fried, H., (2002) Green’s Functions and Ordered Exponentials, , Cambridge, Cambridge University Press; Froese, R., Asymptotic distribution of resonances in one dimension (1997) J. Differ. Equ, 137 (2), pp. 251-272. , 1997JDE..137.251F, 1456597; Garnett, J., (1981) Bounded Analytic Functions. Pure and Applied Mathematics, , New York, Academic Press; Iantchenko, A., Korotyaev, E., Resonances for 1D massless Dirac operators (2014) J. Differ. Equ, 256 (8), pp. 3038-3066. , 3199756; Iantchenko, A., Korotyaev, E., Resonances for Dirac operators on the half-line (2014) J. Math. Anal. Appl, 420 (1), pp. 279-313. , 3229825; Klein, M., On the absence of resonances for Schrödinger operators with nontrapping potentials in the classical limit (1986) Commun. Math. Phys, 106 (3), pp. 485-494. , 1986CMaPh.106.485K, 836873; Korey, M., Ideal weights: asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation (1998) J. Fourier Anal. Appl, 4 (4-5), pp. 491-519. , 1658636; Korotyaev, E., Mokeev, D., Inverse resonance scattering for Dirac operators on the half-line (2021) Anal. Math. Phys., 11 (1), p. 26. , Paper No. 32; Krein, M., Continuous Analogues of Propositions on Polynomials Orthogonal on the Unit Circle (1955) Dokl. Akad. Nauk SSSR (N.S.), 105, pp. 637-640; Levin, B., Lectures on Entire Functions (1996) Translations of Mathematical Monographs, 150. , American Mathematical Society, Providence, RI; Levitan, B., Sargsjan, I., Sturm–Liouville and Dirac Operators, 59. , of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991). Translated from the Russian; Matveev, V., Skriganov, M., Wave operators for a Schrödinger equation with rapidly oscillating potential (1972) Dokl. Akad. Nauk SSSR, 202, pp. 755-757. , 300135; Nevai, P., Totik, V., Orthogonal polynomials and their zeros (1989) Acta Sci. Math. (Szeged), 53 (1-2), pp. 99-104. , 1018677; Reed, M., Simon, B., Scattering theory (1979) Methods of Modern Mathematical Physics. III, , Academic Press, New York-London; Remling, C., (2018) Spectral Theory of Canonical Systems, , Berlin, De Gruyter; Romanov, R., (2014) Canonical Systems and De Branges Spaces. Arxiv, 1408, p. 6022; Sasaki, I., Schrödinger operators with rapidly oscillating potentials (2007) Integral Equ. Oper. Theory, 58 (4), pp. 563-571; Simon, B., Resonances in one dimension and Fredholm determinants (2000) J. Funct. Anal, 178 (2), pp. 396-420. , 1802901; Simon, B., Orthogonal Polynomials on the Unit Circle. Part 1, volume 54 of American Mathematical Society Colloquium Publications (2005) American Mathematical Society, Providence; Simon, B., Of American Mathematical Society Colloquium Publications (2005) American Mathematical Society, 54 (2); Sjöstrand, J., Geometric bounds on the density of resonances for semiclassical problems (1990) Duke Math. J, 60 (1), pp. 1-57. , 1047116; Skriganov, M., The spectrum of a Schrödinger operator with rapidly oscillating potential (1973) Trudy Mat. Inst. Steklov, 125 (235), pp. 187-195. , Boundary value problems of mathematical physics, 8; Szegő, G., (1975) Orthogonal Polynomials, , 4, Providence, R.I., American Mathematical Society; Teplyaev, A., A note on the theorems of M. G. Krein and L. A. Sakhnovich on continuous analogs of orthogonal polynomials on the circle (2005) J. Funct. Anal, 226 (2), pp. 257-280. , 2159458
PY - 2024/2/21
Y1 - 2024/2/21
N2 - We prove that the Weyl function of the one-dimensional Dirac operator on the half-line R+ with exponentially decaying entropy extends meromorphically into the horizontal strip {0⩾Imz>-δ} for some δ>0 depending on the rate of decay. If the entropy decreases very rapidly then the corresponding Weyl function turns out to be meromorphic in the whole complex plane. In this situation we show that poles of the Weyl function (scattering resonances) uniquely determine the operator. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
AB - We prove that the Weyl function of the one-dimensional Dirac operator on the half-line R+ with exponentially decaying entropy extends meromorphically into the horizontal strip {0⩾Imz>-δ} for some δ>0 depending on the rate of decay. If the entropy decreases very rapidly then the corresponding Weyl function turns out to be meromorphic in the whole complex plane. In this situation we show that poles of the Weyl function (scattering resonances) uniquely determine the operator. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
KW - 34L40
KW - Dirac operator
KW - Entropy function
KW - Krein system
UR - https://www.mendeley.com/catalogue/3ad9a6fc-e275-3c7f-bab8-826845c93e67/
U2 - 10.1007/s00365-024-09678-0
DO - 10.1007/s00365-024-09678-0
M3 - статья
JO - Constructive Approximation
JF - Constructive Approximation
SN - 0176-4276
ER -
ID: 117320055