Standard

Dimension of gradient measures. / Stolyarov, Dmitriy M.; Wojciechowski, Michal.

In: Comptes Rendus Mathematique, Vol. 352, No. 10, 01.01.2014, p. 791-795.

Research output: Contribution to journalArticlepeer-review

Harvard

Stolyarov, DM & Wojciechowski, M 2014, 'Dimension of gradient measures', Comptes Rendus Mathematique, vol. 352, no. 10, pp. 791-795. https://doi.org/10.1016/j.crma.2014.08.011

APA

Stolyarov, D. M., & Wojciechowski, M. (2014). Dimension of gradient measures. Comptes Rendus Mathematique, 352(10), 791-795. https://doi.org/10.1016/j.crma.2014.08.011

Vancouver

Stolyarov DM, Wojciechowski M. Dimension of gradient measures. Comptes Rendus Mathematique. 2014 Jan 1;352(10):791-795. https://doi.org/10.1016/j.crma.2014.08.011

Author

Stolyarov, Dmitriy M. ; Wojciechowski, Michal. / Dimension of gradient measures. In: Comptes Rendus Mathematique. 2014 ; Vol. 352, No. 10. pp. 791-795.

BibTeX

@article{0a23b40bd35a451c9680b12e7584e7d4,
title = "Dimension of gradient measures",
abstract = "We prove that if pure derivatives of a function on Rn are complex measures, then their lower Hausdorff dimension is at least n-. 1. The derivatives with respect to different coordinates may be of different order.",
author = "Stolyarov, {Dmitriy M.} and Michal Wojciechowski",
year = "2014",
month = jan,
day = "1",
doi = "10.1016/j.crma.2014.08.011",
language = "English",
volume = "352",
pages = "791--795",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier",
number = "10",

}

RIS

TY - JOUR

T1 - Dimension of gradient measures

AU - Stolyarov, Dmitriy M.

AU - Wojciechowski, Michal

PY - 2014/1/1

Y1 - 2014/1/1

N2 - We prove that if pure derivatives of a function on Rn are complex measures, then their lower Hausdorff dimension is at least n-. 1. The derivatives with respect to different coordinates may be of different order.

AB - We prove that if pure derivatives of a function on Rn are complex measures, then their lower Hausdorff dimension is at least n-. 1. The derivatives with respect to different coordinates may be of different order.

UR - http://www.scopus.com/inward/record.url?scp=84907964807&partnerID=8YFLogxK

U2 - 10.1016/j.crma.2014.08.011

DO - 10.1016/j.crma.2014.08.011

M3 - Article

AN - SCOPUS:84907964807

VL - 352

SP - 791

EP - 795

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 10

ER -

ID: 35959224