Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
Difference equations, uniform quasiclassical asymptotics and Airy functions. / Fedotov, A. ; Klopp, F.
Days on diffraction 2018. Saint Petersburg : Institute of Electrical and Electronics Engineers Inc., 2018. p. 98-102.Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
}
TY - GEN
T1 - Difference equations, uniform quasiclassical asymptotics and Airy functions
AU - Fedotov, A.
AU - Klopp, F.
PY - 2018
Y1 - 2018
N2 - We consider the second order difference equation ψ(z + h) + ψ(z - h) + v(z)ψ(z) = 0 where z is a complex variable, h > 0 is a parameter, and v is an analytic function. As h → 0 the analytic solutions to this equation have quasiclassical behavior. In this note we describe their uniform asymptotics in neighborhoods of simple turning points, the neighborhoods being independent of h.
AB - We consider the second order difference equation ψ(z + h) + ψ(z - h) + v(z)ψ(z) = 0 where z is a complex variable, h > 0 is a parameter, and v is an analytic function. As h → 0 the analytic solutions to this equation have quasiclassical behavior. In this note we describe their uniform asymptotics in neighborhoods of simple turning points, the neighborhoods being independent of h.
KW - Turning
KW - Diffraction
KW - Eigenvalues and eigenfunctions
KW - Physics
KW - Magnetic domains
KW - Taylor series
UR - http://www.pdmi.ras.ru/~dd/download/PROC18.pdf
U2 - 10.1109/DD.2018.8553493
DO - 10.1109/DD.2018.8553493
M3 - Conference contribution
SP - 98
EP - 102
BT - Days on diffraction 2018
PB - Institute of Electrical and Electronics Engineers Inc.
CY - Saint Petersburg
T2 - 2018 International Conference Days on Diffraction, DD 2018
Y2 - 4 June 2018 through 8 June 2018
ER -
ID: 35751925