Research output: Contribution to journal › Article › peer-review
Design and Evaluation of an Experimental Technique for Mechanical and Fatigue Testing of Sub-Sized Samples. / Lomakin, I. V.; Arutyunyan, A. R.; Valiev, R. R.; Gadzhiev, F. A.; Murashkin, M. Yu.
In: Experimental Techniques, Vol. 42, No. 3, 01.06.2018, p. 261-270.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Design and Evaluation of an Experimental Technique for Mechanical and Fatigue Testing of Sub-Sized Samples
AU - Lomakin, I. V.
AU - Arutyunyan, A. R.
AU - Valiev, R. R.
AU - Gadzhiev, F. A.
AU - Murashkin, M. Yu
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Some recently developed processing techniques allow fabrication of small specimens. The fatigue behavior of these small samples cannot be characterised according to the existing standards due to size limitations. The main objective of the present work is to develop an original technique for both mechanical and fatigue testing of sub-sized specimens produced by a high pressure torsion (HPT) method. The fatigue behavior of the sub-sized Ti-6Al-4 V samples, made from HPT-processed disks, is compared with that of the standard samples prepared according to the ASTM standards. Finite element method (FEM) analysis of the stress distribution under applied static load, for both sub-sized specimens and grips designed for their testing, is performed. Good agreement between the outcomes of tensile testing of the standard ASTM samples and sub-sized samples is observed. Fatigue data, represented by Wöhler curves for both types of samples, showed significant divergence of high cycle fatigue properties caused by incompliance of specimen geometries and surface/defect size ratio. The obtained results can be used to scale up the fatigue behavior from sub-sized specimens to the standard ones, as well as to predict the fatigue behavior of the bulk nanostructured metals and alloys produced by HPT.
AB - Some recently developed processing techniques allow fabrication of small specimens. The fatigue behavior of these small samples cannot be characterised according to the existing standards due to size limitations. The main objective of the present work is to develop an original technique for both mechanical and fatigue testing of sub-sized specimens produced by a high pressure torsion (HPT) method. The fatigue behavior of the sub-sized Ti-6Al-4 V samples, made from HPT-processed disks, is compared with that of the standard samples prepared according to the ASTM standards. Finite element method (FEM) analysis of the stress distribution under applied static load, for both sub-sized specimens and grips designed for their testing, is performed. Good agreement between the outcomes of tensile testing of the standard ASTM samples and sub-sized samples is observed. Fatigue data, represented by Wöhler curves for both types of samples, showed significant divergence of high cycle fatigue properties caused by incompliance of specimen geometries and surface/defect size ratio. The obtained results can be used to scale up the fatigue behavior from sub-sized specimens to the standard ones, as well as to predict the fatigue behavior of the bulk nanostructured metals and alloys produced by HPT.
KW - Experimental technique
KW - Fatigue life
KW - Finite element analysis
KW - Fractography
KW - Sub-sized specimen
KW - Ti-6Al-4V alloy
KW - GRAIN-REFINEMENT
KW - Ti-6Al-4Valloy
KW - HIGH-PRESSURE TORSION
KW - BEHAVIOR
KW - HPT
KW - PRINCIPLES
KW - ECAP-CONFORM
KW - ALUMINUM-ALLOY
KW - STEEL
KW - SEVERE PLASTIC-DEFORMATION
KW - EXTRUSION
UR - http://www.scopus.com/inward/record.url?scp=85046675795&partnerID=8YFLogxK
U2 - 10.1007/s40799-017-0229-7
DO - 10.1007/s40799-017-0229-7
M3 - Article
AN - SCOPUS:85046675795
VL - 42
SP - 261
EP - 270
JO - Experimental Techniques
JF - Experimental Techniques
SN - 0732-8818
IS - 3
ER -
ID: 16274897