Research output: Contribution to journal › Article › peer-review
Deep Learning Methods for Right Ventricle Segmentation in Radionuclide Imaging. / Ларочкин, Петр Викторович; Котина, Елена Дмитриевна; Гирдюк, Дмитрий Викторович; Остроумов, Евгений Николаевич.
In: Cybernetics and Physics, Vol. 14, No. 1, 28.06.2025, p. 62-66.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Deep Learning Methods for Right Ventricle Segmentation in Radionuclide Imaging
AU - Ларочкин, Петр Викторович
AU - Котина, Елена Дмитриевна
AU - Гирдюк, Дмитрий Викторович
AU - Остроумов, Евгений Николаевич
PY - 2025/6/28
Y1 - 2025/6/28
N2 - This study presents a deep learning-based approach for the automatic segmentation of the right ventricle (RV) in gated myocardial perfusion SPECT images (gSPECT). Unlike the left ventricle (LV), the RV poses significant segmentation challenges due to its complex anatomy, thinner walls, and lower perfusion. We manually annotated 384 SPECT volumes and propose the use of the ResUNetSE3D neural network, incorporating both anatomical and phase imaging data to enhance segmentation accuracy. The model achieved a Dice coefficient of 0.8272 and a Jaccard index of 0.7086. These results demonstrate the feasibility of fully automated RV segmentation, laying the groundwork for future clinical applications in quantitative cardiac assessment.
AB - This study presents a deep learning-based approach for the automatic segmentation of the right ventricle (RV) in gated myocardial perfusion SPECT images (gSPECT). Unlike the left ventricle (LV), the RV poses significant segmentation challenges due to its complex anatomy, thinner walls, and lower perfusion. We manually annotated 384 SPECT volumes and propose the use of the ResUNetSE3D neural network, incorporating both anatomical and phase imaging data to enhance segmentation accuracy. The model achieved a Dice coefficient of 0.8272 and a Jaccard index of 0.7086. These results demonstrate the feasibility of fully automated RV segmentation, laying the groundwork for future clinical applications in quantitative cardiac assessment.
KW - deep learning
KW - mathematical modeling
KW - myocardial perfusion imaging
KW - image segmentation
KW - gated single photon emission computed tomography
KW - Gated single photon emission computed tomography (gSPECT)
KW - deep learning
KW - image segmentation
KW - mathematical modeling
KW - myocardial perfusion imaging
UR - https://www.mendeley.com/catalogue/41196851-010c-3eff-9945-d2cd25ce5cf9/
U2 - 10.35470/2226-4116-2024-14-1-62-66
DO - 10.35470/2226-4116-2024-14-1-62-66
M3 - Article
VL - 14
SP - 62
EP - 66
JO - Cybernetics and Physics
JF - Cybernetics and Physics
SN - 2223-7038
IS - 1
ER -
ID: 137816613