This study provides the first quantitative dissection of the factors influencing 1H NMR chemical shifts δH in strong hydrogen-bonded systems, focusing on solvation, nuclear dynamics, and nuclear delocalization. A novel computational framework was developed, combining static quantum chemical calculations (nonrelativistic and relativistic), ab initio molecular dynamics (AIMD), and three-dimensional numerical solutions of the Schrödinger equation. This multiscale approach was applied to three model systems: the bifluoride anion (FHF)−, the Zundel cation (H5O2)+, and the pyridine-pyridinium cation (PyHPy)+. Our results reveal that nuclear dynamics and delocalization are the dominant factors determining δH in complexes with short, strong hydrogen bonds. Solvation effects, while critical for defining the hydrogen-bonding environment, play a secondary role. By isolating the contributions of each factor, we demonstrate that traditional methods often underestimate the quantum mechanical nature of the proton. The application of three-dimensional Schrödinger equation solutions represents a significant methodological advancement, enabling deeper insights into proton behavior in hydrogen bonds. This work not only enhances our understanding of NMR parameters in challenging systems but also establishes a robust framework for modeling complex interactions in chemical and biological environments.