Standard

De Branges functions of Schroedinger equations. / Баранов, Антон Дмитриевич; Белов, Юрий Сергеевич; Poltoratski, Alexei.

In: Collectanea Mathematica, Vol. 68, No. 2, 01.05.2017, p. 251-263.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Баранов, Антон Дмитриевич ; Белов, Юрий Сергеевич ; Poltoratski, Alexei. / De Branges functions of Schroedinger equations. In: Collectanea Mathematica. 2017 ; Vol. 68, No. 2. pp. 251-263.

BibTeX

@article{c29d1231b52b4ed6aaa3a405865e31be,
title = "De Branges functions of Schroedinger equations",
abstract = "We characterize the Hermite–Biehler (de Branges) functions E which correspond to Schroedinger operators with L2L2 potential on the finite interval. From this characterization one can easily deduce a recent theorem by Horvath. We also obtain a result about location of resonances.",
author = "Баранов, {Антон Дмитриевич} and Белов, {Юрий Сергеевич} and Alexei Poltoratski",
year = "2017",
month = may,
day = "1",
doi = "10.1007/s13348-016-0168-0",
language = "English",
volume = "68",
pages = "251--263",
journal = "Collectanea Mathematica",
issn = "0010-0757",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - De Branges functions of Schroedinger equations

AU - Баранов, Антон Дмитриевич

AU - Белов, Юрий Сергеевич

AU - Poltoratski, Alexei

PY - 2017/5/1

Y1 - 2017/5/1

N2 - We characterize the Hermite–Biehler (de Branges) functions E which correspond to Schroedinger operators with L2L2 potential on the finite interval. From this characterization one can easily deduce a recent theorem by Horvath. We also obtain a result about location of resonances.

AB - We characterize the Hermite–Biehler (de Branges) functions E which correspond to Schroedinger operators with L2L2 potential on the finite interval. From this characterization one can easily deduce a recent theorem by Horvath. We also obtain a result about location of resonances.

U2 - 10.1007/s13348-016-0168-0

DO - 10.1007/s13348-016-0168-0

M3 - Article

VL - 68

SP - 251

EP - 263

JO - Collectanea Mathematica

JF - Collectanea Mathematica

SN - 0010-0757

IS - 2

ER -

ID: 9453045