Research output: Contribution to journal › Article › peer-review
Cu-catalyzed cycloaddition of aryl azides to 1-iodobuta-1,3-diynes: an experimental and quantum chemical study of unusual regiochemistry. / Govdi, A.I.; Danilkina, N.A.; Shtyrov, A.A.; Ryazantsev, M.N.; Kim, M.D.; Kryukova, M.A.; Balova, I.A.
In: New Journal of Chemistry, 2024.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Cu-catalyzed cycloaddition of aryl azides to 1-iodobuta-1,3-diynes: an experimental and quantum chemical study of unusual regiochemistry
AU - Govdi, A.I.
AU - Danilkina, N.A.
AU - Shtyrov, A.A.
AU - Ryazantsev, M.N.
AU - Kim, M.D.
AU - Kryukova, M.A.
AU - Balova, I.A.
N1 - Export Date: 11 March 2024 CODEN: NJCHE Адрес для корреспонденции: Balova, I.A.; Institute of Chemistry, Universitetskaya nab. 7/9, Russian Federation; эл. почта: i.balova@spbu.ru Сведения о финансировании: Russian Science Foundation, RSF, 19-73-10077-Π Текст о финансировании 1: This work was funded by the Russian Science Foundation grant 19-73-10077-Π. The authors are grateful to the Magnetic Resonance Research Center, Center for X-ray Diffraction Studies, Center for Chemical Analysis and Materials Research, Thermogravimetric and Calorimetric Research Centre, and Computer Centre (all belonging to Saint Petersburg State University) for the physicochemical and computational studies. Dr A. V. Artem’ev (Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia) is thanked for providing the Et catalyst. The authors are grateful to Professor A. F. Khlebnikov (Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russia) for a constructive discussion. Пристатейные ссылки: Breugst, M., Reissig, H., The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition (2020) Angew. Chem., Int. Ed., 59, pp. 12293-12307; Beutick, S.E., Vermeeren, P., Hamlin, T.A., The 1,3-Dipolar Cycloaddition: From Conception to Quantum Chemical Design (2022) Chem. - Asian J., 17, p. e202200553; Huisgen, R., Szeimies, G., Möbius, L., 1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen (1967) Chem. Ber., 100, pp. 2494-2507; Rostovtsev, V.V., Green, L.G., Fokin, V.V., Sharpless, K.B., A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes (2002) Angew. Chem., Int. Ed., 41, pp. 2596-2599; Tornøe, C.W., Christensen, C., Meldal, M., Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides (2002) J. Org. Chem., 67, pp. 3057-3064; Kolb, H.C., Finn, M.G., Sharpless, K.B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions (2001) Angew. Chem., Int. Ed., 40, pp. 2004-2021; Kumar, S., Sharma, B., Mehra, V., Kumar, V., Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles (2021) Eur. J. Med. Chem., 212, p. 113069; Neumann, S., Biewend, M., Rana, S., Binder, W.H., The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications (2020) Macromol. Rapid Commun., 41, p. 1900359; Brunel, D., Dumur, F., Recent advances in organic dyes and fluorophores comprising a 1,2,3-triazole moiety (2020) New J. Chem., 44, pp. 3546-3561; Li, L., Zhang, Z., Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction (2016) Molecules, 21, p. 1393; Gong, Y., Wang, C., Zhou, F., Liao, K., Wang, X., Sun, Y., Zhang, Y., Zhou, J., Sulfonyl-PYBOX Ligands Enable Kinetic Resolution of α-Tertiary Azides by CuAAC (2023) Angew. Chem., Int. Ed., 62, p. e202301470; Zhou, F., Tan, C., Tang, J., Zhang, Y., Gao, W., Wu, H., Yu, Y., Zhou, J., Asymmetric Copper(I)-Catalyzed Azide-Alkyne Cycloaddition to Quaternary Oxindoles (2013) J. Am. Chem. Soc., 135, pp. 10994-10997; Liao, K., Gong, Y., Zhu, R., Wang, C., Zhou, F., Zhou, J., Highly Enantioselective CuAAC of Functional Tertiary Alcohols Featuring an Ethynyl Group and Their Kinetic Resolution (2021) Angew. Chem., Int. Ed., 60, pp. 8488-8493; Qin, C., Zhao, C., Chen, G., Liu, Y., Catalytic Enantioselective Azide-Alkyne Cycloaddition Chemistry Opens Up New Prospects for Chiral Triazole Syntheses (2023) ACS Catal., 13, pp. 6301-6311; Worrell, B.T., Malik, J.A., Fokin, V.V., Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions (2013) Science, 340, pp. 457-460; Iacobucci, C., Reale, S., Gal, J.-F., De Angelis, F., Dinuclear Copper Intermediates in Copper(I)-Catalyzed Azide-Alkyne Cycloaddition Directly Observed by Electrospray Ionization Mass Spectrometry (2015) Angew. Chem., Int. Ed., 54, pp. 3065-3068; Jin, L., Romero, E.A., Melaimi, M., Bertrand, G., The Janus Face of the X Ligand in the Copper-Catalyzed Azide-Alkyne Cycloaddition (2015) J. Am. Chem. Soc., 137, pp. 15696-15698; Zhu, L., Brassard, C.J., Zhang, X., Guha, P.M., Clark, R.J., On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition (2016) Chem. Rec., 16, pp. 1501-1517; Wang, C., Ikhlef, D., Kahlal, S., Saillard, J.-Y., Astruc, D., Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends (2016) Coord. Chem. Rev., 316, pp. 1-20; Zhang, L., Chen, X., Xue, P., Sun, H.H.Y., Williams, I.D., Sharpless, K.B., Fokin, V.V., Jia, G., Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides (2005) J. Am. Chem. Soc., 127, pp. 15998-15999; Boren, B.C., Narayan, S., Rasmussen, L.K., Zhang, L., Zhao, H., Lin, Z., Jia, G., Fokin, V.V., Ruthenium-Catalyzed Azide−Alkyne Cycloaddition: Scope and Mechanism (2008) J. Am. Chem. Soc., 130, p. 14900; Boz, E., Tüzün, N.Ş., Reaction mechanism of ruthenium-catalyzed azide-alkyne cycloaddition reaction: A DFT study (2013) J. Organomet. Chem., 724, pp. 167-176; Johansson, J.R., Beke-Somfai, T., Said Stålsmeden, A., Kann, N., Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications (2016) Chem. Rev., 116, pp. 14726-14768; Kim, W.G., Kang, M.E., Bin Lee, J., Jeon, M.H., Lee, S., Lee, J., Choi, B., Hong, S.Y., Nickel-Catalyzed Azide-Alkyne Cycloaddition To Access 1,5-Disubstituted 1,2,3-Triazoles in Air and Water (2017) J. Am. Chem. Soc., 139, pp. 12121-12124; Alshakova, I.D., Albrecht, M., Cascade Reductive Friedel-Crafts Alkylation Catalyzed by Robust Iridium(III) Hydride Complexes Containing a Protic Triazolylidene Ligand (2021) ACS Catal., 11, pp. 8999-9007; Stein, F., Kirsch, M., Beerhues, J., Albold, U., Sarkar, B., Mono- and Di-Mesoionic Carbene-Boranes: Synthesis, Structures and Utility as Reducing Agents (2021) Eur. J. Inorg. Chem., pp. 2417-2424; Ma, J., Ding, S., Transition Metal-Catalyzed Cycloaddition of Azides with Internal Alkynes (2020) Asian J. Org. Chem., 9, pp. 1872-1888; Kuijpers, B.H.M., Dijkmans, G.C.T., Groothuys, S., Quaedflieg, P.J.L.M., Blaauw, R.H., van Delft, F.L., Rutjes, F.P.J.T., Copper(I)-Mediated Synthesis of Trisubstituted 1,2,3-Triazoles (2005) Synlett, pp. 3059-3062; Hein, J.E., Tripp, J.C., Krasnova, L.B., Sharpless, K.B., Fokin, V.V., Copper(I)-Catalyzed Cycloaddition of Organic Azides and 1-Iodoalkynes (2009) Angew. Chem., Int. Ed., 48, pp. 8018-8021; Lal, S., Rzepa, H.S., Díez-González, S., Catalytic and Computational Studies of N-Heterocyclic Carbene or Phosphine-Containing Copper(I) Complexes for the Synthesis of 5-Iodo-1,2,3-Triazoles (2014) ACS Catal., 4, pp. 2274-2287; Danilkina, N.A., Govdi, A.I., Balova, I.A., 5-Iodo-1H-1,2,3-triazoles as Versatile Building Blocks (2020) Synthesis, pp. 1874-1896; Gharpure, S.J., Naveen, S., Chavan, R.S., Padmaja, Regioselective Synthesis of Halotriazoles and their Utility in Metal Catalyzed Coupling Reactions (2020) Eur. J. Org. Chem., pp. 6870-6886; Oakdale, J.S., Sit, R.K., Fokin, V.V., Ruthenium-Catalyzed Cycloadditions of 1-Haloalkynes with Nitrile Oxides and Organic Azides: Synthesis of 4-Haloisoxazoles and 5-Halotriazoles (2014) Chem. - Eur. J., 20, pp. 11101-11110; Luo, Q., Jia, G., Sun, J., Lin, Z., Theoretical Studies on the Regioselectivity of Iridium-Catalyzed 1,3-Dipolar Azide-Alkyne Cycloaddition Reactions (2014) J. Org. Chem., 79, pp. 11970-11980; Rasolofonjatovo, E., Theeramunkong, S., Bouriaud, A., Kolodych, S., Chaumontet, M., Taran, F., Iridium-Catalyzed Cycloaddition of Azides and 1-Bromoalkynes at Room Temperature (2013) Org. Lett., 15, pp. 4698-4701; Suntrup, L., Beerhues, J., Etzold, O., Sarkar, B., Copper(i) complexes bearing mesoionic carbene ligands: influencing the activity in catalytic halo-click reactions (2020) Dalton Trans., 49, pp. 15504-15510; Krasiński, A., Fokin, V.V., Sharpless, K.B., Direct Synthesis of 1,5-Disubstituted-4-magnesio-1,2,3-triazoles, Revisited (2004) Org. Lett., 6, pp. 1237-1240; Karsakova, I.V., Smirnov, A.Y., Baranov, M.S., An effective method for the synthesis of 1,5-disubstituted 4-halo-1H-1,2,3-triazoles from magnesium acetylides (2018) Chem. Heterocycl. Compd., 54, pp. 755-757; Szuroczki, P., Molnár, L., Dörnyei, INNOAACUTE;., Kollár, L., Facile, High-Yielding Synthesis of 4-Functionalised 1,2,3-Triazoles via Amino- and Aryloxycarbonylation (2020) ChemistrySelect, 5, pp. 448-451; Papudippu, M., Shu, H., Izenwasser, S., Wade, D., Gulasey, G., Fournet, S., Stevens, E.D., Trudell, M.L., Regioselective synthesis and cannabinoid receptor binding affinity of N-alkylated 4,5-diaryl-1,2,3-triazoles (2012) Med. Chem. Res., 21, pp. 4473-4484; Mahadari, M.K., Tague, A.J., Keller, P.A., Pyne, S.G., Synthesis of sterically congested 1,5-disubstituted-1,2,3-Triazoles using chloromagnesium acetylides and hindered 1-naphthyl azides (2021) Tetrahedron, 81, p. 131916; Ito, S., Satoh, A., Nagatomi, Y., Hirata, Y., Suzuki, G., Kimura, T., Satow, A., Ohta, H., Discovery and biological profile of 4-(1-aryltriazol-4-yl)-tetrahydropyridines as an orally active new class of metabotropic glutamate receptor 1 antagonist (2008) Bioorg. Med. Chem., 16, pp. 9817-9829; Edem, P.E., Czorny, S., Valliant, J.F., Synthesis and Evaluation of Radioiodinated Acyloxymethyl Ketones as Activity-Based Probes for Cathepsin B (2014) J. Med. Chem., 57, pp. 9564-9577; Huang, J., Macdonald, S.J.F., Harrity, J.P.A., A cycloaddition route to novel triazole boronic esters (2009) Chem. Commun., pp. 436-438; Bédard, A.-C., Collins, S.K., Advanced Strategies for Efficient Macrocyclic Cu(I)-Catalyzed Cycloaddition of Azides (2014) Org. Lett., 16, pp. 5286-5289; Silva, P.J., Bernardo, C.E.P., Influence of Alkyne and Azide Substituents on the Choice of the Reaction Mechanism of the Cu + -Catalyzed Addition of Azides to Iodoalkynes (2018) J. Phys. Chem. A, 122, pp. 7497-7507; Govdi, A.I., Danilkina, N.A., Ponomarev, A.V., Balova, I.A., 1-Iodobuta-1,3-diynes in Copper-Catalyzed Azide-Alkyne Cycloaddition: A One-Step Route to 4-Ethynyl-5-iodo-1,2,3-triazoles (2019) J. Org. Chem., 84, pp. 1925-1940; Efremova, M.M., Govdi, A.I., Frolova, V.V., Rumyantsev, A.M., Balova, I.A., Design and Synthesis of New 5-aryl-4-Arylethynyl-1H-1,2,3-triazoles with Valuable Photophysical and Biological Properties (2021) Molecules, 26, p. 2801; Govdi, A.I., Tokareva, P.V., Rumyantsev, A.M., Panov, M.S., Stellmacher, J., Alexiev, U., Danilkina, N.A., Balova, I.A., 4,5-Bis(arylethynyl)-1,2,3-triazoles—A New Class of Fluorescent Labels: Synthesis and Applications (2022) Molecules, 27, p. 3191; Maugeri, L., Lébl, T., Cordes, D.B., Slawin, A.M.Z., Philp, D., Cooperative Binding in a Phosphine Oxide-Based Halogen Bonded Dimer Drives Supramolecular Oligomerization (2017) J. Org. Chem., 82, pp. 1986-1995; Docker, A., Stevens, J.G., Beer, P.D., Halogen Bonding Heteroditopic Materials for Cooperative Sodium Iodide Binding and Extraction (2021) Chem. - Eur. J., 27, pp. 14600-14604; Lim, J.Y.C., Beer, P.D., Superior perrhenate anion recognition in water by a halogen bonding acyclic receptor (2015) Chem. Commun., 51, pp. 3686-3688; Docker, A., Guthrie, C.H., Kuhn, H., Beer, P.D., Modulating Chalcogen Bonding and Halogen Bonding Sigma-Hole Donor Atom Potency and Selectivity for Halide Anion Recognition (2021) Angew. Chem., Int. Ed., 60, pp. 21973-21978; Bunchuay, T., Docker, A., Martinez-Martinez, A.J., Beer, P.D., A Potent Halogen-Bonding Donor Motif for Anion Recognition and Anion Template Mechanical Bond Synthesis (2019) Angew. Chem., Int. Ed., 58, pp. 13823-13827; Tatevosyan, S.S., Kotovshchikov, Y.N., Latyshev, G.V., Erzunov, D.A., Sokolova, D.V., Beletskaya, I.P., Lukashev, N.V., A Route to Triazole-Fused Sultams via Metal-Free Base-Mediated Cyclization of Sulfonamide-Tethered 5-Iodotriazoles (2020) J. Org. Chem., 85, pp. 7863-7876; Docker, A., Tse, Y.C., Tay, H.M., Taylor, A.J., Zhang, Z., Beer, P.D., Anti-Hofmeister Anion Selectivity via a Mechanical Bond Effect in Neutral Halogen-Bonding [2]Rotaxanes (2022) Angew. Chem., Int. Ed., 61, p. e202214523; Creary, X., Anderson, A., Brophy, C., Crowell, F., Funk, Z., Method for Assigning Structure of 1,2,3-Triazoles (2012) J. Org. Chem., 77, pp. 8756-8761; Dias, H.V.R., Polach, S.A., Goh, S.-K., Archibong, E.F., Marynick, D.S., Copper and Silver Complexes Containing Organic Azide Ligands: Syntheses, Structures, and Theoretical Investigation of [HB(3,5-(CF3)2Pz)3]CuNNN(1-Ad) and [HB(3,5-(CF3)2Pz)3]AgN(1-Ad)NN (Where Pz = Pyrazolyl and 1-Ad = 1-Adamantyl) (2000) Inorg. Chem., 39, pp. 3894-3901; Ryazantsev, M.N., Jamal, A., Maeda, S., Morokuma, K., Global investigation of potential energy surfaces for the pyrolysis of C 1 -C 3 hydrocarbons: toward the development of detailed kinetic models from first principles (2015) Phys. Chem. Chem. Phys., 17, pp. 27789-27805; Maeda, S., Ohno, K., Morokuma, K., Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods (2013) Phys. Chem. Chem. Phys., 15, p. 3683; Parker, D.S.N., Dangi, B.B., Kaiser, R.I., Jamal, A., Ryazantsev, M., Morokuma, K., Formation of 6-Methyl-1,4-dihydronaphthalene in the Reaction of the p-Tolyl Radical with 1,3-Butadiene under Single-Collision Conditions (2014) J. Phys. Chem. A, 118, pp. 12111-12119; Frisch, D.J.F.M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Had, M., (2013) Gaussian 09, Revision D.01, , Gaussian Inc. Wallingford CT; Héron, J., Balcells, D., Concerted Cycloaddition Mechanism in the CuAAC Reaction Catalyzed by 1,8-Naphthyridine Dicopper Complexes (2022) ACS Catal., 12, pp. 4744-4753; Maini, L., Braga, D., Mazzeo, P.P., Ventura, B., Polymorph and isomer conversion of complexes based on CuI and PPh 3 easily observed via luminescence (2012) Dalt. Trans., 41, pp. 531-539; Weinhold, F., Landis, C.R., Glendening, E.D., What is NBO analysis and how is it useful? (2016) Int. Rev. Phys. Chem., 35, pp. 399-440; Gold, B., Dudley, G.B., Alabugin, I.V., Moderating Strain without Sacrificing Reactivity: Design of Fast and Tunable Noncatalyzed Alkyne-Azide Cycloadditions via Stereoelectronically Controlled Transition State Stabilization (2013) J. Am. Chem. Soc., 135, pp. 1558-1569; Gold, B., Shevchenko, N.E., Bonus, N., Dudley, G.B., Alabugin, I.V., Selective Transition State Stabilization via Hyperconjugative and Conjugative Assistance: Stereoelectronic Concept for Copper-Free Click Chemistry (2012) J. Org. Chem., 77, pp. 75-89; Danilkina, N.A., Govdi, A.I., Khlebnikov, A.F., Tikhomirov, A.O., Sharoyko, V.V., Shtyrov, A.A., Ryazantsev, M.N., Balova, I.A., Heterocycloalkynes Fused to a Heterocyclic Core: Searching for an Island with Optimal Stability-Reactivity Balance (2021) J. Am. Chem. Soc., 143, pp. 16519-16537; Özkılıç, Y., Tüzün, N.Ş., A DFT Study on the Binuclear CuAAC Reaction: Mechanism in Light of New Experiments (2016) Organometallics, 35, pp. 2589-2599; Narth, C., Maroun, Z., Boto, R.A., Chaudret, R., Bonnet, M.-L., Piquemal, J.-P., Contreras-García, J., (2016) Challenges and Advances in Computational Chemistry and Physics, , vol. 22 pp. 491-;527; Lu, T., Chen, F., Multiwfn: A multifunctional wavefunction analyzer (2012) J. Comput. Chem., 33, pp. 580-592; Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J. Mol. Graphics, 14, pp. 33-38; Danilkina, N.A., D’yachenko, A.S., Govdi, A.I., Khlebnikov, A.F., Kornyakov, I.V., Bräse, S., Balova, I.A., Intramolecular Nicholas Reactions in the Synthesis of Heteroenediynes Fused to Indole, Triazole, and Isocoumarin (2020) J. Org. Chem., 85, pp. 9001-9014
PY - 2024
Y1 - 2024
N2 - Cu-catalyzed azide-alkyne cycloaddition (CuAAC) in the case of 1-iodoalkynes is known as a synthetic tool towards 5-iodo-1,2,3-triazole derivatives. We found that CuAAC of 1-iodobuta-1,3-diynes and aryl azides under CuI(PPh3)3 catalysis unexpectedly leads to the formation of both 4-iodo- and 5-iodo-1,2,3-triazoles. Aryl azides bearing acceptor groups and iodoaryldiacetylenes having donor groups shift the isomer ratio in favor of nontrivial 4-iodotriazoles. The reason for the change in the regioselectivity was explained using DFT calculations, which revealed the binuclear nature of the CuAAC transition states (TSs) for iodoalkynes and azides cycloaddition. The regiochemistry of cycloaddition is determined by the type of azide N atom coordinated to the Cu atom and by a spatial arrangement of the binuclear Cu catalyst and alkyne in the TS. In particular in the case of 1-iodobuta-1,3-diynes both regioisomeric TSs have a linear orientation of the alkyne moiety and the I-Cu-P fragment of the binuclear catalyst that makes both N1-Cu (for 5-I-TS) and N3-Cu (for 4-I-TS) coordination possible. The influence of various electronic and stereoelectronic effects established by NBO analysis, as well as NCI interactions, on the stabilization of isomeric TSs in the reactions of aryl/alkyl azides with iodomono- and diacetylenes is discussed. 4-Iodotriazoles are more thermodynamically stable than 5-iodotriazoles, while only the latter form I-N halogen bonds in the solid state. © 2024 The Royal Society of Chemistry
AB - Cu-catalyzed azide-alkyne cycloaddition (CuAAC) in the case of 1-iodoalkynes is known as a synthetic tool towards 5-iodo-1,2,3-triazole derivatives. We found that CuAAC of 1-iodobuta-1,3-diynes and aryl azides under CuI(PPh3)3 catalysis unexpectedly leads to the formation of both 4-iodo- and 5-iodo-1,2,3-triazoles. Aryl azides bearing acceptor groups and iodoaryldiacetylenes having donor groups shift the isomer ratio in favor of nontrivial 4-iodotriazoles. The reason for the change in the regioselectivity was explained using DFT calculations, which revealed the binuclear nature of the CuAAC transition states (TSs) for iodoalkynes and azides cycloaddition. The regiochemistry of cycloaddition is determined by the type of azide N atom coordinated to the Cu atom and by a spatial arrangement of the binuclear Cu catalyst and alkyne in the TS. In particular in the case of 1-iodobuta-1,3-diynes both regioisomeric TSs have a linear orientation of the alkyne moiety and the I-Cu-P fragment of the binuclear catalyst that makes both N1-Cu (for 5-I-TS) and N3-Cu (for 4-I-TS) coordination possible. The influence of various electronic and stereoelectronic effects established by NBO analysis, as well as NCI interactions, on the stabilization of isomeric TSs in the reactions of aryl/alkyl azides with iodomono- and diacetylenes is discussed. 4-Iodotriazoles are more thermodynamically stable than 5-iodotriazoles, while only the latter form I-N halogen bonds in the solid state. © 2024 The Royal Society of Chemistry
KW - Catalysts
KW - Copper compounds
KW - Hydrocarbons
KW - Quantum chemistry
KW - Acceptor groups
KW - Aryl azides
KW - Azide-alkyne cycloaddition
KW - Cycloadditions
KW - Donor groups
KW - Iodoalkynes
KW - Quantum chemical studies
KW - Regiochemistry
KW - Transition state
KW - Triazole derivatives
KW - Catalysis
UR - https://www.mendeley.com/catalogue/53d0dd2b-d93f-33a6-a836-4b9a7eedd8e0/
U2 - 10.1039/d3nj03823h
DO - 10.1039/d3nj03823h
M3 - статья
JO - New Journal of Chemistry
JF - New Journal of Chemistry
SN - 1144-0546
ER -
ID: 117488125