A glassy phase is formed over the whole composition range for melt-spun (Fe1−xNix)79B12P5Si3C1 with x = 0; 0.2; 0.4; 0.5; 0.6 alloy ribbons and these glassy ribbons exhibit good bending plasticity. The Ni-containing glassy alloys show glass transition, followed by a supercooled liquid (SCL) region and then multistage crystallization for the alloys with x = 0.5 and 0.6 (hereafter 0.5Ni and 0.6Ni alloys). The 0.5Ni glassy alloy exhibits the largest SCL region of 43 K and good soft magnetic properties even in as-spun state, i.e., low coercive force of 4.8 A/m, effective permeability of 7400 at 1 kHz and saturation magnetization of 0.80 T. The bending plasticity remains unchanged in the wide annealing temperature range below Tg. The crystallization proceeds in the processes of glassy (G) → bcc(α)Fe(Si) + Fe3B for the 0–0.2 Ni alloys, G → fcc(γ)(Fe,Ni) + Fe3(B,C) + Fe3Ni3(B,C) for the 0.4Ni alloy and G → G’ + γ(Fe,Ni) → γ(Fe,Ni) + Ni5P2 + Fe4P + Fe3Ni3(B,C) for the 0.5Ni and 0.6Ni alloys. Analyses of crystallization reaction in isochronal and isothermal conditions were performed via Kissinger and JMAK models and the activation energy for crystallization is much larger for the 0.5Ni glassy alloy. The appearance of the largest SCL region as well as the highest activation energy for the 0.5Ni alloy is due to the necessity of the simultaneous decomposition to the four crystalline phases. The better magnetic softness for the 0.5Ni alloy is presumably due to the development of medium-range ordered atomic configurations which enable the appearances of the largest SCL region as well as the lower internal stress state. The combination of useful properties for the 0.5Ni glassy alloy is promising for useful soft magnetic materials with mass production ability.

Original languageEnglish
Article number161475
Number of pages10
JournalJournal of Alloys and Compounds
Volume888
DOIs
StatePublished - 25 Dec 2021

    Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

    Research areas

  • Calorimetry, Kinetics, Metallic glasses, Quenching, Rapid-solidification, Transmission electron microscopy, TEM, X-ray diffraction, FORMING ABILITY, Transmission electron microscopy, NI ADDITION, SI, BULK METALLIC GLASSES, TEM, HIGH SATURATION MAGNETIZATION

ID: 85686937