Research output: Contribution to journal › Article › peer-review
The high data point density measurements of 1H→11B cross-polarization (CP) kinetics upon magic-angle spinning (MAS) of [bmim][BF4] confined in mesoporous SBA-15 and MCM-41 were carried out. The complex shaped 11B CP MAS signals were observed in both silica and decomposed into two Lorentz components. This points towards the possibility of bimodal distribution of [bmim][BF4] in the studied confinements. The convergence of classical and non-classical spin coupling models was deduced processing CP kinetic curves. A good fit of the theoretical curves to the experimental data was achieved using both models without any non-random deviations between theory and experiment to appear. The convergence of spin coupling models was discussed in terms of relatively high mobility of BF4 − anion respect to the cation and the dynamics of anions in pores. These factors delete the borders between spin clusters. The spin diffusion along the pore surfaces in MCM-41 is more than twice faster than in SBA-15.
Original language | English |
---|---|
Pages (from-to) | 673-685 |
Number of pages | 13 |
Journal | Applied Magnetic Resonance |
Volume | 48 |
Issue number | 7 |
DOIs | |
State | Published - 1 Jul 2017 |
ID: 9345237